# 1.3 Linear shm  (Page 4/4)

 Page 4 / 4

$⇒\text{Period}=\frac{2\pi }{2\omega }=\frac{\pi }{\omega }=\frac{T}{2}$

As time period of variation is half, the frequency of “U” is twice that of displacement. For this reason, potential energy – time plot is denser than that of displacement – time plot.

## Mechanical energy

The basic requirement of SHM is that mechanical energy of the system is conserved. At any point or at any time of instant, the sum of potential and kinetic energy of the system in SHM is constant. This is substantiated by evaluating sum of two energies :

$E=K+U$

Using expressions involving displacement, we have :

$⇒E=\frac{1}{2}m{\omega }^{2}\left({A}^{2}-{x}^{2}\right)+\frac{1}{2}m{\omega }^{2}{x}^{2}=\frac{1}{2}m{\omega }^{2}{A}^{2}$

The plots of kinetic, potential and mechanical energy with respect to displacement are drawn in the figure. Note that the sum of kinetic and potential energy is always a constant, which is equal to the mechanical energy of the particle in SHM.

We can also obtain expression of mechanical energy, using time dependent expressions of kinetic and potential energy as :

$⇒E=\frac{1}{2}m{\omega }^{2}{A}^{2}{\mathrm{cos}}^{2}\left(\omega t+\phi \right)+\frac{1}{2}m{\omega }^{2}{A}^{2}{\mathrm{sin}}^{2}\left(\omega t+\phi \right)$

$⇒E=\frac{1}{2}m{\omega }^{2}{A}^{2}\left\{\mathrm{cos}{}^{2}\left(\omega t+\phi \right)+\mathrm{sin}{}^{2}\left(\omega t+\phi \right)\right\}=\frac{1}{2}m{\omega }^{2}{A}^{2}$

The mechanical energy – time plot is shown in the figure. We observe following important points about variation of energy with respect to time :

• Mechanical energy – time plot is a straight line parallel to time axis. This signifies that mechanical energy of particle in SHM is conserved.
• There is transformation of energy between kinetic and potential energy during SHM.
• At any instant, the sum of kinetic and potential energy is equal to $\frac{1}{2}m{\omega }^{2}{A}^{2}$ or $\frac{1}{2}k{A}^{2}$ , which is equal to maximum values of either kinetic or potential energy.

## Example

Problem 1: The potential energy of an oscillating particle of mass “m” along straight line is given as :

$U\left(x\right)=a+b{\left(x-c\right)}^{2}$

The mechanical energy of the oscillating particle is “E”.

• Determine whether oscillation is SHM?
• If oscillation is SHM, then find amplitude and maximum kinetic energy.

Solution : If the motion is SHM, then restoring force is a conservative force. The potential energy is, then, defined such that :

$dU=-Fdx$

$⇒F=-\frac{dU}{dx}=-2b\left(x-c\right)$

In order to find the center of oscillation, we put F = 0.

$F=-2b\left(x-c\right)=0\phantom{\rule{1em}{0ex}}⇒x-c=0\phantom{\rule{1em}{0ex}}⇒x=c$

This means that particle is oscillating about point x = c. The displacement of the particle in that case is “x-c” – not “x”. This, in turn, means that force is proportional to negative of displacement, “x-c”. Hence, particle is executing SHM.

Alternatively, put y = x-c :

$F=-2by$

This means that particle is executing SHM about y = 0. This means x-c = 0, which in turn, means that particle is executing SHM about x = c.

The mechanical energy is related to amplitude by the relation :

$E=\frac{1}{2}m{\omega }^{2}{A}^{2}$

$⇒A=\sqrt{\left(\frac{2E}{m{\omega }^{2}}\right)}$

Now, $m{\omega }^{2}=k=2b$ . Hence,

$⇒A=\sqrt{\left(\frac{2E}{2b}\right)}=\sqrt{\left(\frac{E}{b}\right)}$

The potential energy is minimum at the center of oscillation i.e. when x = c. Putting this value in the expression of potential energy, we have :

$⇒{U}_{\text{min}}=a+b{\left(c-c\right)}^{2}=a$

It is important to note that minimum value of potential energy need not be zero. Now, kinetic energy is maximum, when potential energy is minimum. Hence,

${K}_{\text{max}}=E-{U}_{\text{min}}=E-a$

what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!  By Mistry Bhavesh     By By  