# 6.4 Working with taylor series  (Page 4/11)

 Page 4 / 11

Use power series to solve ${y}^{\prime }=2y,\phantom{\rule{0.5em}{0ex}}y\left(0\right)=5.$

$y=5{e}^{2x}$

We now consider an example involving a differential equation that we cannot solve using previously discussed methods. This differential equation

${y}^{\prime }-xy=0$

is known as Airy’s equation . It has many applications in mathematical physics, such as modeling the diffraction of light. Here we show how to solve it using power series.

## Power series solution of airy’s equation

Use power series to solve

$y\text{″}-xy=0$

with the initial conditions $y\left(0\right)=a$ and $y\prime \left(0\right)=b.$

We look for a solution of the form

$y=\sum _{n=0}^{\infty }{c}_{n}{x}^{n}={c}_{0}+{c}_{1}x+{c}_{2}{x}^{2}+{c}_{3}{x}^{3}+{c}_{4}{x}^{4}+\text{⋯}.$

Differentiating this function term by term, we obtain

$\begin{array}{ccc}\hfill {y}^{\prime }& =\hfill & {c}_{1}+2{c}_{2}x+3{c}_{3}{x}^{2}+4{c}_{4}{x}^{3}+\text{⋯},\hfill \\ \hfill y\text{″}& =\hfill & 2·1{c}_{2}+3·2{c}_{3}x+4·3{c}_{4}{x}^{2}+\text{⋯}.\hfill \end{array}$

If y satisfies the equation $y\text{″}=xy,$ then

$2·1{c}_{2}+3·2{c}_{3}x+4·3{c}_{4}{x}^{2}+\text{⋯}=x\left({c}_{0}+{c}_{1}x+{c}_{2}{x}^{2}+{c}_{3}{x}^{3}+\text{⋯}\right).$

Using [link] on the uniqueness of power series representations, we know that coefficients of the same degree must be equal. Therefore,

$\begin{array}{c}2·1{c}_{2}=0,\hfill \\ 3·2{c}_{3}={c}_{0},\hfill \\ 4·3{c}_{4}={c}_{1},\hfill \\ 5·4{c}_{5}={c}_{2},\hfill \\ \hfill \text{⋮}.\hfill \end{array}$

More generally, for $n\ge 3,$ we have $n·\left(n-1\right){c}_{n}={c}_{n-3}.$ In fact, all coefficients can be written in terms of ${c}_{0}$ and ${c}_{1}.$ To see this, first note that ${c}_{2}=0.$ Then

$\begin{array}{}\\ \\ {c}_{3}=\frac{{c}_{0}}{3·2},\hfill \\ {c}_{4}=\frac{{c}_{1}}{4·3}.\hfill \end{array}$

For ${c}_{5},{c}_{6},{c}_{7},$ we see that

$\begin{array}{}\\ \\ {c}_{5}=\frac{{c}_{2}}{5·4}=0,\hfill \\ {c}_{6}=\frac{{c}_{3}}{6·5}=\frac{{c}_{0}}{6·5·3·2},\hfill \\ {c}_{7}=\frac{{c}_{4}}{7·6}=\frac{{c}_{1}}{7·6·4·3}.\hfill \end{array}$

Therefore, the series solution of the differential equation is given by

$y={c}_{0}+{c}_{1}x+0·{x}^{2}+\frac{{c}_{0}}{3·2}{x}^{3}+\frac{{c}_{1}}{4·3}{x}^{4}+0·{x}^{5}+\frac{{c}_{0}}{6·5·3·2}{x}^{6}+\frac{{c}_{1}}{7·6·4·3}{x}^{7}+\text{⋯}.$

The initial condition $y\left(0\right)=a$ implies ${c}_{0}=a.$ Differentiating this series term by term and using the fact that ${y}^{\prime }\left(0\right)=b,$ we conclude that ${c}_{1}=b.$ Therefore, the solution of this initial-value problem is

$y=a\left(1+\frac{{x}^{3}}{3·2}+\frac{{x}^{6}}{6·5·3·2}+\text{⋯}\right)+b\left(x+\frac{{x}^{4}}{4·3}+\frac{{x}^{7}}{7·6·4·3}+\text{⋯}\right).$

Use power series to solve $y\text{″}+{x}^{2}y=0$ with the initial condition $y\left(0\right)=a$ and ${y}^{\prime }\left(0\right)=b.$

$y=a\left(1-\frac{{x}^{4}}{3·4}+\frac{{x}^{8}}{3·4·7·8}-\text{⋯}\right)+b\left(x-\frac{{x}^{5}}{4·5}+\frac{{x}^{9}}{4·5·8·9}-\text{⋯}\right)$

## Evaluating nonelementary integrals

Solving differential equations is one common application of power series. We now turn to a second application. We show how power series can be used to evaluate integrals involving functions whose antiderivatives cannot be expressed using elementary functions.

One integral that arises often in applications in probability theory is $\int {e}^{\text{−}{x}^{2}}dx.$ Unfortunately, the antiderivative of the integrand ${e}^{\text{−}{x}^{2}}$ is not an elementary function. By elementary function, we mean a function that can be written using a finite number of algebraic combinations or compositions of exponential, logarithmic, trigonometric, or power functions. We remark that the term “elementary function” is not synonymous with noncomplicated function. For example, the function $f\left(x\right)=\sqrt{{x}^{2}-3x}+{e}^{{x}^{3}}-\text{sin}\left(5x+4\right)$ is an elementary function, although not a particularly simple-looking function. Any integral of the form $\int f\left(x\right)\phantom{\rule{0.1em}{0ex}}dx$ where the antiderivative of $f$ cannot be written as an elementary function is considered a nonelementary integral    .

Nonelementary integrals cannot be evaluated using the basic integration techniques discussed earlier. One way to evaluate such integrals is by expressing the integrand as a power series and integrating term by term. We demonstrate this technique by considering $\int {e}^{\text{−}{x}^{2}}dx.$

## Using taylor series to evaluate a definite integral

1. Express $\int {e}^{\text{−}{x}^{2}}dx$ as an infinite series.
2. Evaluate ${\int }_{0}^{1}{e}^{\text{−}{x}^{2}}dx$ to within an error of $0.01.$
1. The Maclaurin series for ${e}^{\text{−}{x}^{2}}$ is given by
$\begin{array}{cc}\hfill {e}^{\text{−}{x}^{2}}& =\sum _{n=0}^{\infty }\frac{{\left(\text{−}{x}^{2}\right)}^{n}}{n\text{!}}\hfill \\ & =1-{x}^{2}+\frac{{x}^{4}}{2\text{!}}-\frac{{x}^{6}}{3\text{!}}+\text{⋯}+{\left(-1\right)}^{n}\frac{{x}^{2n}}{n\text{!}}+\text{⋯}\hfill \\ & =\sum _{n=0}^{\infty }{\left(-1\right)}^{n}\frac{{x}^{2n}}{n\text{!}}.\hfill \end{array}$

Therefore,
$\begin{array}{cc}\hfill \int {e}^{\text{−}{x}^{2}}dx& =\int \left(1-{x}^{2}+\frac{{x}^{4}}{2\text{!}}-\frac{{x}^{6}}{3\text{!}}+\text{⋯}+{\left(-1\right)}^{n}\frac{{x}^{2n}}{n\text{!}}+\text{⋯}\right)\phantom{\rule{0.1em}{0ex}}dx\hfill \\ & =C+x-\frac{{x}^{3}}{3}+\frac{{x}^{5}}{5.2\text{!}}-\frac{{x}^{7}}{7.3\text{!}}+\text{⋯}+{\left(-1\right)}^{n}\frac{{x}^{2n+1}}{\left(2n+1\right)n\text{!}}+\text{⋯}.\hfill \end{array}$
2. Using the result from part a. we have
${\int }_{0}^{1}{e}^{\text{−}{x}^{2}}dx=1-\frac{1}{3}+\frac{1}{10}-\frac{1}{42}+\frac{1}{216}-\text{⋯}.$

The sum of the first four terms is approximately $0.74.$ By the alternating series test, this estimate is accurate to within an error of less than $\frac{1}{216}\approx 0.0046296<0.01.$

How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
Leaves accumulate on the forest floor at a rate of 2 g/cm2/yr and also decompose at a rate of 90% per year. Write a differential equation governing the number of grams of leaf litter per square centimeter of forest floor, assuming at time 0 there is no leaf litter on the ground. Does this amount approach a steady value? What is that value?
You have a cup of coffee at temperature 70°C, which you let cool 10 minutes before you pour in the same amount of milk at 1°C as in the preceding problem. How does the temperature compare to the previous cup after 10 minutes?
Abdul By Subramanian Divya         By