# 8.3 Inverse trigonometric functions  (Page 4/15)

 Page 4 / 15

## Evaluating compositions of the form f ( f−1 ( y )) and f−1 ( f ( x ))

For any trigonometric function, $\text{\hspace{0.17em}}f\left({f}^{-1}\left(y\right)\right)=y\text{\hspace{0.17em}}$ for all $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ in the proper domain for the given function. This follows from the definition of the inverse and from the fact that the range of $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ was defined to be identical to the domain of $\text{\hspace{0.17em}}{f}^{-1}.\text{\hspace{0.17em}}$ However, we have to be a little more careful with expressions of the form $\text{\hspace{0.17em}}{f}^{-1}\left(f\left(x\right)\right).$

## Compositions of a trigonometric function and its inverse

$\begin{array}{l}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\mathrm{sin}\left({\mathrm{sin}}^{-1}x\right)=x\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}-1\le x\le 1\hfill \\ \mathrm{cos}\left({\mathrm{cos}}^{-1}x\right)=x\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}-1\le x\le 1\hfill \\ \text{\hspace{0.17em}}\mathrm{tan}\left({\mathrm{tan}}^{-1}x\right)=x\text{\hspace{0.17em}}\text{for}\text{\hspace{0.17em}}-\infty

Is it correct that $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{sin}\text{\hspace{0.17em}}x\right)=x?$

No. This equation is correct if $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ belongs to the restricted domain $\text{\hspace{0.17em}}\left[-\frac{\pi }{2},\frac{\pi }{2}\right],\text{\hspace{0.17em}}$ but sine is defined for all real input values, and for $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ outside the restricted interval, the equation is not correct because its inverse always returns a value in $\text{\hspace{0.17em}}\left[-\frac{\pi }{2},\frac{\pi }{2}\right].\text{\hspace{0.17em}}$ The situation is similar for cosine and tangent and their inverses. For example, $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{sin}\left(\frac{3\pi }{4}\right)\right)=\frac{\pi }{4}.$

Given an expression of the form f −1 (f(θ)) where evaluate.

1. If $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ is in the restricted domain of
2. If not, then find an angle $\text{\hspace{0.17em}}\varphi \text{\hspace{0.17em}}$ within the restricted domain of $\text{\hspace{0.17em}}f\text{\hspace{0.17em}}$ such that $\text{\hspace{0.17em}}f\left(\varphi \right)=f\left(\theta \right).\text{\hspace{0.17em}}$ Then $\text{\hspace{0.17em}}{f}^{-1}\left(f\left(\theta \right)\right)=\varphi .$

## Using inverse trigonometric functions

Evaluate the following:

1. ${\mathrm{sin}}^{-1}\left(\mathrm{sin}\left(\frac{\pi }{3}\right)\right)$
2. ${\mathrm{sin}}^{-1}\left(\mathrm{sin}\left(\frac{2\pi }{3}\right)\right)$
3. ${\mathrm{cos}}^{-1}\left(\mathrm{cos}\left(\frac{2\pi }{3}\right)\right)$
4. ${\mathrm{cos}}^{-1}\left(\mathrm{cos}\left(-\frac{\pi }{3}\right)\right)$
1. so $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{sin}\left(\frac{\pi }{3}\right)\right)=\frac{\pi }{3}.$
2. but $\text{\hspace{0.17em}}\mathrm{sin}\left(\frac{2\pi }{3}\right)=\mathrm{sin}\left(\frac{\pi }{3}\right),\text{\hspace{0.17em}}$ so $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{sin}\left(\frac{2\pi }{3}\right)\right)=\frac{\pi }{3}.$
3. so $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}\left(\mathrm{cos}\left(\frac{2\pi }{3}\right)\right)=\frac{2\pi }{3}.$
4. but $\text{\hspace{0.17em}}\mathrm{cos}\left(-\frac{\pi }{3}\right)=\mathrm{cos}\left(\frac{\pi }{3}\right)\text{\hspace{0.17em}}$ because cosine is an even function.
5. so $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}\left(\mathrm{cos}\left(-\frac{\pi }{3}\right)\right)=\frac{\pi }{3}.$

Evaluate $\text{\hspace{0.17em}}{\mathrm{tan}}^{-1}\left(\mathrm{tan}\left(\frac{\pi }{8}\right)\right)\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}{\mathrm{tan}}^{-1}\left(\mathrm{tan}\left(\frac{11\pi }{9}\right)\right).$

$\frac{\pi }{8};\frac{2\pi }{9}$

## Evaluating compositions of the form f−1 ( g ( x ))

Now that we can compose a trigonometric function with its inverse, we can explore how to evaluate a composition of a trigonometric function and the inverse of another trigonometric function. We will begin with compositions of the form $\text{\hspace{0.17em}}{f}^{-1}\left(g\left(x\right)\right).\text{\hspace{0.17em}}$ For special values of $\text{\hspace{0.17em}}x,$ we can exactly evaluate the inner function and then the outer, inverse function. However, we can find a more general approach by considering the relation between the two acute angles of a right triangle where one is $\text{\hspace{0.17em}}\theta ,\text{\hspace{0.17em}}$ making the other $\text{\hspace{0.17em}}\frac{\pi }{2}-\theta .$ Consider the sine and cosine of each angle of the right triangle in [link] .

Because $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}\theta =\frac{b}{c}=\mathrm{sin}\left(\frac{\pi }{2}-\theta \right),\text{\hspace{0.17em}}$ we have $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{cos}\text{\hspace{0.17em}}\theta \right)=\frac{\pi }{2}-\theta \text{\hspace{0.17em}}$ if $\text{\hspace{0.17em}}0\le \theta \le \pi .\text{\hspace{0.17em}}$ If $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ is not in this domain, then we need to find another angle that has the same cosine as $\text{\hspace{0.17em}}\theta \text{\hspace{0.17em}}$ and does belong to the restricted domain; we then subtract this angle from $\text{\hspace{0.17em}}\frac{\pi }{2}.$ Similarly, $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}\theta =\frac{a}{c}=\mathrm{cos}\left(\frac{\pi }{2}-\theta \right),\text{\hspace{0.17em}}$ so $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}\left(\mathrm{sin}\text{\hspace{0.17em}}\theta \right)=\frac{\pi }{2}-\theta \text{\hspace{0.17em}}$ if $\text{\hspace{0.17em}}-\frac{\pi }{2}\le \theta \le \frac{\pi }{2}.\text{\hspace{0.17em}}$ These are just the function-cofunction relationships presented in another way.

Given functions of the form $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{cos}\text{\hspace{0.17em}}x\right)\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}\left(\mathrm{sin}\text{\hspace{0.17em}}x\right),\text{\hspace{0.17em}}$ evaluate them.

1. If then $\text{\hspace{0.17em}}{\mathrm{sin}}^{-1}\left(\mathrm{cos}\text{\hspace{0.17em}}x\right)=\frac{\pi }{2}-x.$
2. If then find another angle such that $\text{\hspace{0.17em}}\mathrm{cos}\text{\hspace{0.17em}}y=\mathrm{cos}\text{\hspace{0.17em}}x.$
${\mathrm{sin}}^{-1}\left(\mathrm{cos}\text{\hspace{0.17em}}x\right)=\frac{\pi }{2}-y$
3. If then $\text{\hspace{0.17em}}{\mathrm{cos}}^{-1}\left(\mathrm{sin}\text{\hspace{0.17em}}x\right)=\frac{\pi }{2}-x.$
4. If then find another angle such that $\text{\hspace{0.17em}}\mathrm{sin}\text{\hspace{0.17em}}y=\mathrm{sin}\text{\hspace{0.17em}}x.$
${\mathrm{cos}}^{-1}\left(\mathrm{sin}\text{\hspace{0.17em}}x\right)=\frac{\pi }{2}-y$

what are odd numbers
numbers that leave a remainder when divided by 2
Thorben
1,3,5,7,... 99,...867
Thorben
7%2=1, 679%2=1, 866245%2=1
Thorben
the third and the seventh terms of a G.P are 81 and 16, find the first and fifth terms.
if a=3, b =4 and c=5 find the six trigonometric value sin
pls how do I factorize x⁴+x³-7x²-x+6=0
in a function the input value is called
how do I test for values on the number line
if a=4 b=4 then a+b=
a+b+2ab
Kin
commulative principle
a+b= 4+4=8
Mimi
If a=4 and b=4 then we add the value of a and b i.e a+b=4+4=8.
Tariq
what are examples of natural number
an equation for the line that goes through the point (-1,12) and has a slope of 2,3
3y=-9x+25
Ishaq
show that the set of natural numberdoes not from agroup with addition or multiplication butit forms aseni group with respect toaaddition as well as multiplication
x^20+x^15+x^10+x^5/x^2+1
evaluate each algebraic expression. 2x+×_2 if ×=5
if the ratio of the root of ax+bx+c =0, show that (m+1)^2 ac =b^2m
By the definition, is such that 0!=1.why?
(1+cosA+IsinA)(1+cosB+isinB)/(cos@+isin@)(cos$+isin$)
hatdog
Mark
jaks
Ryan

#### Get Jobilize Job Search Mobile App in your pocket Now! By By By Jazzycazz Jackson By OpenStax By Rohini Ajay By Rachel Carlisle By Saylor Foundation By OpenStax By Rohini Ajay By Rhodes By OpenStax By Anh Dao