<< Chapter < Page Chapter >> Page >
Este modulo definirá una norma y da unos ejemplos y sus propiedades.


Mucho del lenguaje utilizado en esta sección seráfamiliar para usted- debe de haber estado expuesto a los conceptos de

  • producto interno
  • ortogonalidad
  • expansión de base
en el contexto de n . Vamos a tomar lo que conocemos sobre vectores y aplicarlo a funciones (señales de tiempo continuo).


La norma de un vector es un número real que representa el "tamaño" de el vector.

En 2 , podemos definir la norma que sea la longitud geométrica de los vectores.

x x 0 x 1 , norma x x 0 2 x 1 2

Matemáticamente, una norma · es solo una función (tomando un vector y regresando un número real) que satisface tres reglas

Got questions? Get instant answers now!

Para ser una norma, · debe satisfacer:

  • la norma de todo vector es positiva x x S x 0
  • escalando el vector, se escala la norma por la misma cantidad α x α x para todos los vectores x y escalares α
  • Propiedad del Triángulo: x y x y para todos los vectores x , y .“El“tamaño“de la suma de dos vectores es menor o igual a la suma de sus tamaños”

Un espacio vectorial con una norma bien definida es llamado un espacio vectorial normado o espacio lineal normado .


n n ), x x 0 x 1 x n - 1 , 1 x i 0 n 1 x i , n con esta norma es llamado 1 ( [ 0 , n - 1 ] ) .

Colección de todas las x 2 con 1 x 1
Got questions? Get instant answers now!

n n ), con norma 2 x i 0 n 1 x i 2 1 2 , n es llamado 2 ( [ 0 , n - 1 ] ) (la usual "norma Euclideana").

Colección de todas las x 2 with 2 x 1
Got questions? Get instant answers now!

n (or n , with norm x i x i is called ( [ 0 , n - 1 ] )

x 2 con x 1
Got questions? Get instant answers now!

Espacios de secuencias y funciones

Podemos definir normas similares para espacios de secuencias y funciones.

Señales de tiempo discreto= secuencia de números x n x -2 x -1 x 0 x 1 x 2

  • 1 x n i x i , x n 1 ( ) 1 x
  • 2 x n i x i 2 1 2 , x n 2 ( ) 2 x
  • p x n i x i p 1 p , x n p ( ) p x
  • x n sup i | x [ i ] | , x n ( ) x

Para funciones continuas en el tiempo:

  • p f t t f t p 1 p , f t L p ( ) p f t
  • (En el intervalo) p f t t 0 T f t p 1 p , f t L p ( [ 0 , T ] ) p f t

Questions & Answers

what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Señales y sistemas. OpenStax CNX. Sep 28, 2006 Download for free at http://cnx.org/content/col10373/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Señales y sistemas' conversation and receive update notifications?