<< Chapter < Page | Chapter >> Page > |
For problems 1-10, specify each term.
$9x-6y+1$
$-5h+2k-8+4m$
$-a-b-c-1$
Write $1x$ in a simpler way.
In the expression $\text{12}m$ , how many $m$ ’s are indicated?
In the expression $-\text{10}y$ , how many $y$ ’s are indicated?
For problems 17-46, find the value of each expression.
$7n-3r$ , if $n=-6$ and $r=2$
$\text{10}a-2b+5c$ , if $a=0$ , $b=-6$ , and $c=8$
$-3m-4n+5$ , if $m=-1$ and $n=-1$
$n=2$ , if $n=2$
$-a+3b-6$ , if $a=-3$ and $b=0$
$\mathrm{2a}-\mathrm{6b}-\mathrm{3a}-a+\mathrm{2b}$ , if $a=4$ and $b=-2$
${m}^{2}-8m-6$ , if $m=-5$
$5a}^{2}-6a+\text{11$ , if $a=0$
$-{h}^{2}-2h-3$ , if $h=-4$
$\frac{a}{8}-2a+1$ , if $a=\text{24}$
$\frac{3k}{4}-5k+\text{18}$ , if $k=\text{16}$
$\frac{-7h}{9}-7h-7$ , if $h=-\text{18}$
$7\left(2y-x\right)$ , if $x=-1$ and $y=2$
$-\left(x-x-y\right)$ , if $x=4$ and $y=-4$
$(a-7{)}^{2}-2(a-7)-2$ , if $a=7$
For problems 47-56, simplify each expression by combining like terms.
$7x+3x-\text{14}x$
$-9k-8h-k+6h$
$6n-2n+6-2-n$
$\mid -8\mid a+\mid 2\mid b-\mid -4\mid a$
$\mid 6\mid h-\mid -7\mid k+\mid -\text{12}\mid h+\mid 4\mid \cdot \mid -5\mid h$
$\text{38}h-\mathrm{7k}$
$\mid 0\mid a-0a+0$
For problems 57-140, solve each equation.
$3x=\text{17}$
$\frac{x}{-8}=3$
$\frac{x}{-4}=-3$
$\frac{a}{-5}=2$
$-7=\frac{x}{3}$
$4y=\frac{1}{2}$
$\frac{-1}{9}=\frac{k}{3}$
$\frac{0}{4}=4s$
$\frac{x}{6}+1=4$
$\frac{4x}{3}=7$
$\displaystyle \frac{3y}{2}-4=6$
$\frac{1x}{2}=2$
$\frac{-3x}{7}-4=4$
$-4k-6=7$
$\frac{-6x}{4}=2$
$y+5=\text{21}$
$4x=\text{24}$
$6y-\text{11}=\text{13}$
$3z+9=-\text{51}$
$\frac{6y}{7}=5$
$\frac{x}{-2}-\text{23}=-\text{10}$
$\frac{3z}{4}=\frac{-7}{8}$
$4x+1+6x=\text{10}$
$3=4a-2a+a$
$5w-6=4+2w$
$5x-2x+6x=\text{13}$
$5y+2y-1=6y$
$\frac{x}{3}+\frac{3x}{3}-2=\text{16}$
$\frac{-5x}{7}=\frac{2x}{7}$
$\frac{-3x}{5}+3=\frac{2x}{5}+2$
$\frac{3x}{4}+5=\frac{-3x}{4}-\text{11}$
$x=\frac{-\text{32}}{3}$
$\frac{3x}{7}=\frac{-3x}{7}+\text{12}$
$\frac{5y}{\text{13}}-4=\frac{7y}{\text{26}}+1$
$y=\frac{\text{130}}{3}$
$\frac{-3m}{5}=\frac{6m}{\text{10}}-2$
$-3z=\frac{2z}{5}$
Notification Switch
Would you like to follow the 'Fundamentals of mathematics' conversation and receive update notifications?