<< Chapter < Page Chapter >> Page >
In this module, the following topics are addressed: 1) environmental impacts of energy use, 2) energy sources based on their environmental impact, and 3) the global capacity for each non-renewable energy source.

Learning objectives

After reading this module, students should be able to

  • outline environmental impacts of energy use
  • evaluate the different energy sources based on their environmental impact
  • understand the global capacity for each non-renewable energy source

Introduction

Energy to illuminate, heat and cool our homes, businesses and institutions, manufacture products, and drive our transportation systems comes from a variety of sources that are originate from our planet and solar system. This provides a social and economic benefit to society. The earth’s core provides geothermal energy    . The gravitational pull of moon and sun create tides. The sun makes power in multiple ways. By itself, the sun generates direct solar power. The sun’s radiation in combination with the hydrologic cycle can make wind power and hydroelectric power. Through photosynthesis, plants grow making wood and biomass    that decay after they die into organic matter. Over the course of thousands of years, this decay results in fossil fuels that have concentrated or stored energy. To learn more about measuring different kinds of energy, known as emergy, see Chapter Problem-Solving, Metrics and Tools for Sustainability . Each of these types of energy can be defined as renewable or non-renewable fuels and they each have some environmental and health cost.

Fossil fuel reserves are not distributed equally around the planet, nor are consumption and demand. We will see in this chapter that fuel distribution is critical to the sustainability of fossil fuel resources for a given geographic area. Access to renewable resources and their viability is greatly dependent on geography and climate. Making energy requires an input of energy so it is important to look at the net energy generated – the difference of the energy produced less the energy invested.

Environmental and health challenges of energy use

The environmental impacts of energy use on humans and the planet can happen anywhere during the life cycle of the energy source. The impacts begin with the extraction of the resource. They continue with the processing, purification or manufacture of the source, its transportation to place of energy generation, effects from the generation of energy including use of water, air, and land, and end with the disposal of waste generated during the process. Extraction of fossil fuels, especially as the more conventional sources are depleted, takes a high toll on the natural environment. As we mine deeper into mountains, further out at sea, or further into pristine habitats, we risk damaging fragile environments, and the results of accidents or natural disasters during extraction processes can be devastating. Fossils fuels are often located far from where they are utilized so they need to be transported by pipeline, tankers, rail or trucks. These all present the potential for accidents, leakage and spills. When transported by rail or truck energy must be expended and pollutants are generated. Processing of petroleum, gas and coal generates various types of emissions and wastes, as well as utilizes water resources. Production of energy at power plants results in air, water, and, often, waste emissions. Power plants are highly regulated by federal and state law under the Clean Air and Clean Water Acts , while nuclear power plants are regulated by the Nuclear Regulatory Commission . As long as the facilities are complying, much of the environmental impact is mitigated by treating the emissions and using proper waste disposal methods. However, from a sustainability perspective these still present environmental threats over the long run and have a complex variety of issues around them. Figure Environmental Impacts of Nonrenewable and Renewable Electricity Sources summarizes these challenges. Later in the module, they are described more fully for each source of energy and examples are given.

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 9

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Sustainability: a comprehensive foundation. OpenStax CNX. Nov 11, 2013 Download for free at http://legacy.cnx.org/content/col11325/1.43
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Sustainability: a comprehensive foundation' conversation and receive update notifications?

Ask