<< Chapter < Page Chapter >> Page >
This module defines eigenvalues and eigenvectors and explains a method of finding them given a matrix. These ideas are presented, along with many examples, in hopes of leading up to an understanding of the Fourier Series.

En esta sección, nuestro sistema lineal seráuna matriz de n×n de números complejos. Algunos conceptos de este modulo están basado en los conceptos básicos de álgebra lineal .

Eigenvectores y eigenvalores

Sea A una matriz de n×n donde A es un operador lineal en los vectores de n .

A x b
donde x y b son vectores de n×1 ( ).

Ilustración de un sistema lineal y vectores.
Eigenvector
Un eigenvector de A es un vector v n tal que
A v λ v
donde λ es llamado el eigenvalor correspondiente. A solo cambia la longitud de v , no su dirección.

Modelo grÁFico

A través de las siguientes y , veamos las diferencias de la y de la .

Representa la , A x b .

Si v es un eigenvector de A , entonces solo su longitud cambia. Véase y note que la longitud de nuestro vector esta simplemente escalada por una variable λ , llamada eigenvalor :

Representa la , A v λ v .

Cuando tratamos con una matriz A , los eigenvectores son los vectores posibles más simples para trabajar.

Ejemplos

Por inspección y entendimiento de eigenvectores, encuentre los dos eigenvectores v 1 y v 2 , de A 3 0 0 -1 También¿cuáles son los eigenvalores correspondientes, λ 1 y λ 2 ? No se preocupe si tiene problemas viendo estos valores de la información dada hasta ahora, veremos otras maneras mas rigurosas de encontrar estos valores.

Los eigenvectores que debióencontrar son: v 1 1 0 v 2 0 1 Y los eigenvalores correspondientes son: λ 1 3 λ 2 -1

Got questions? Get instant answers now!

Muestre que estos dos vectores, v 1 1 1 v 2 1 -1 son eigenvectores de A , donde A 3 -1 -1 3 . También encuentre los eigenvalores correspondientes.

Para poder probar que estos dos vectores son eigenvectores, mostraremos que estas afirmaciones cumplen con los requisitos que indica la definición . A v 1 3 -1 -1 3 1 1 2 2 A v 2 3 -1 -1 3 1 -1 4 -4 Este resultado nos muestra que A solo escala los dos vectores ( es decir cambia sus longitudes) y esto prueba que la es cierta para los siguientes dos eigenvalores que se le pidióque encontrara: λ 1 2 λ 2 4 .Si quiere convencerse más, entonces también se pueden graficar los vectores y su producto correspondiente con A para ver los resultados como una versión escalada de los vectores originales v 1 y v 2 .

Got questions? Get instant answers now!

Calculando eigenvalores y eigenvectores

En los ejemplos anteriores, confiamos en su entendimiento de la definición y de algunas observaciones para encontrar y probar los valores de los eigenvectores y eigenvalores. Sin embrago como se puede dar cuenta, encontrar estos valores no siempre es fácil. A continuación veremos un método matemático para calcular eigenvalores y eigenvectores de una matriz.

Encontrando eigenvalores

Encontrar λ tal que v 0 , donde 0 es el“vector cero”. Empezaremos con la , trabajemos de la siguiente manera mientras encontramos una manera explicita de calcular λ . A v λ v A v λ v 0 A λ I v 0 En el paso previo, usamos el hecho de que λ v λ I v donde I es la matriz identidad. I 1 0 0 0 1 0 0 0 0 1 Por lo tanto, A λ I es justo una matriz nueva.

Dada la siguiente matriz, A , entonces podemos encontrar nuestra nueva matriz, A λ I . A a 1 1 a 1 2 a 2 1 a 2 2 A λ I a 1 1 λ a 1 2 a 2 1 a 2 2 λ

Got questions? Get instant answers now!

Si A λ I v 0 para algún v 0 , entonces A λ I es no invertible . Esto quiere decir: A λ I 0 este determinante (el mostrado arriba) se vuelve una expresión polinomial (de grado n ). Véase el siguiente ejemplo para entender mejor.

Empezando con la matriz A (mostrada a continuación), encontremos la expresión polinomial, donde nuestros eigenvalores serán variables dependientes. A 3 -1 -1 3 A λ I 3 λ -1 -1 3 λ A λ I 3 λ 2 -1 2 λ 2 6 λ 8 λ 2 4

Got questions? Get instant answers now!

Empezando con la matriz A (mostrada a continuación),encontremos la expresión polinomial, donde nuestros eigenvalores serán variables dependientes. A a 1 1 a 1 2 a 2 1 a 2 2 A λ I a 1 1 λ a 1 2 a 2 1 a 2 2 λ A λ I λ 2 a 1 1 a 2 2 λ a 2 1 a 1 2 a 1 1 a 2 2

Got questions? Get instant answers now!

Si no lo han notado, calcular los eigenvalores es equivalente a calcular las raíces de A λ I c n λ n c n 1 λ n 1 c 1 λ c 0 0

Por lo tanto usando unos pequeños cálculos para resolver las raíces de nuestro polinomio, podemos encontrar los eigenvalores de la matriz.

Encontrando eigenvectores

Dado un eigenvalor, λ i , el eigenvector asociado esta dado por A v λ i v A v 1 v n λ 1 v 1 λ n v n conjunto de n ecuaciones con n incognitas. Simplemente se resuelven las solve the n ecuaciones para encontrar los eigenvectores.

Punto principal

El decir que los eigenvectores de A , v 1 v 2 v n , generan el subespacio n , significa que v 1 v 2 v n son linealmente independientes y que podemos escribir cualquier x n como

x α 1 v 1 α 2 v 2 α n v n
donde α 1 α 2 α n Todo lo que estamos haciendo es reescribir x en términos de los eigenvectores de A . Entonces, A x A α 1 v 1 α 2 v 2 α n v n A x α 1 A v 1 α 2 A v 2 α n A v n A x α 1 λ 1 v 1 α 2 λ 2 v 2 α n λ n v n b por lo tanto podemos escribir, x i α i v i Y esto nos lleva a la siguiente representación del sistema:

Ilustración del sistema donde descomponemos nuestro vector, x , en la suma de sus eigenvectores.

donde en la tenemos, b i α i λ i v i

Descomponiendo nuestro vector, x , en una combinación de eigenvectores, la solución de A x esta dada en piezas“fáciles de digerir".

Problema de prÁCtica

Para la siguiente matriz, A y vector x , resuélvase por sus productos. Trate de resolverlos por los dos diferentes métodos: directamente y usando eigenvectores. A 3 -1 -1 3 x 5 3

Método Directo (usese la multiplicación básica de matrices) A x 3 -1 -1 3 5 3 12 4 Eigenvectores (use los eigenvectores y eigenvalores que se encotraron anteriormente para esta misma matriz) v 1 1 1 v 2 1 -1 λ 1 2 λ 2 4 Como se muestra en la , queremos representar x como la suma de sus eigenvectores escalados. Para este caso tenemos: x 4 v 1 v 2 x 5 3 4 1 1 1 -1 A x A 4 v 1 v 2 λ i 4 v 1 v 2 Por lo tanto, tenemos A x 4 2 1 1 4 1 -1 12 4 Nótese que el método usando eigenvectores no requiere multiplicación de matrices. . Esto puede parecer mas complicado hasta ahora, pero, imagine que A es de dimensiones muy grandes.

Got questions? Get instant answers now!

Questions & Answers

what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Señales y sistemas. OpenStax CNX. Sep 28, 2006 Download for free at http://cnx.org/content/col10373/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Señales y sistemas' conversation and receive update notifications?

Ask