<< Chapter < Page Chapter >> Page >
A table with four rows and six columns is shown. The header column contains the phrases, “Number of regions,” “Spatial arrangement,” “Wedge/dash Notation,” and “Electron pair Geometry.” The first row reads: “Two regions of high electron density ( bonds and/or unshared pairs )”, “Three regions of high electron density ( bonds and/or unshared pairs ),” “Four regions of high electron density ( bonds and/or unshared pairs ),” “Five regions of high electron density ( bonds and/or unshared pairs ),” and “Six regions of high electron density ( bonds and/or unshared pairs ).” The second row shows diagrams of orbitals. The first image shows two oval-shaped orbs with an arrow indicating an angle of 180 degrees. The second image shows three oval-shaped orbs with an arrow indicating an angle of 120 degrees. The third image shows four oval-shaped orbs with an arrow indicating an angle of 109.5 degrees. The fourth image shows five oval-shaped orbs with an arrow indicating an angle of 90 and 120 degrees. The fifth image shows six oval-shaped orbs with an arrow indicating an angle of 90 degrees. The third row contains Lewis structures. The first structure shows a beryllium atom single bonded to two hydrogen atoms. The second structure shows a boron atom single bonded to three hydrogen atoms. The third structure shows a carbon atom single bonded to four hydrogen atoms. The fourth structure shows a phosphorus atom single bonded to five fluorine atoms. The fifth structure shows a sulfur atom single bonded to six fluorine atoms. The fourth row contains the phrases “Linear; 180 degree angle,” Trigonal Planar; all angles 120 degrees,” “Tetrahedral; all angles 109.5 degrees,” “Trigonal bipyramidal; angles of 90 degrees and 120 degrees. An attached atom may be equatorial, ( in the plane of the triangle ), or axial, ( above the plane of the triangle ),” and “Octahedral; 90 degrees or 180 degrees.”
The basic electron-pair geometries predicted by VSEPR theory maximize the space around any region of electron density (bonds or lone pairs).

Electron-pair geometry versus molecular structure

It is important to note that electron-pair geometry around a central atom is not the same thing as its molecular structure. The electron-pair geometries shown in [link] describe all regions where electrons are located, bonds as well as lone pairs. Molecular structure describes the location of the atoms , not the electrons.

We differentiate between these two situations by naming the geometry that includes all electron pairs the electron-pair geometry    . The structure that includes only the placement of the atoms in the molecule is called the molecular structure    . The electron-pair geometries will be the same as the molecular structures when there are no lone electron pairs around the central atom, but they will be different when there are lone pairs present on the central atom.

For example, the methane molecule, CH 4 , which is the major component of natural gas, has four bonding pairs of electrons around the central carbon atom; the electron-pair geometry is tetrahedral, as is the molecular structure ( [link] ). On the other hand, the ammonia molecule, NH 3 , also has four electron pairs associated with the nitrogen atom, and thus has a tetrahedral electron-pair geometry. One of these regions, however, is a lone pair, which is not included in the molecular structure, and this lone pair influences the shape of the molecule ( [link] ).

A Lewis structure shows a carbon atom single bonded to four hydrogen atoms. This structure uses wedges and dashes to give it a three dimensional appearance.
The molecular structure of the methane molecule, CH 4 , is shown with a tetrahedral arrangement of the hydrogen atoms. VSEPR structures like this one are often drawn using the wedge and dash notation, in which solid lines represent bonds in the plane of the page, solid wedges represent bonds coming up out of the plane, and dashed lines represent bonds going down into the plane.
Three images are shown and labeled, “a,” “b,” and “c.” Image a shows a nitrogen atom single bonded to three hydrogen atoms. There are four oval-shaped orbs that surround each hydrogen and one facing away from the rest of the molecule. These orbs are located in a tetrahedral arrangement. Image b shows a ball-and-stick model of the nitrogen single bonded to the three hydrogen atoms. Image c is the same as image a, but there are four curved, double headed arrows that circle the molecule and are labeled, “106.8 degrees.”
(a) The electron-pair geometry for the ammonia molecule is tetrahedral with one lone pair and three single bonds. (b) The trigonal pyramidal molecular structure is determined from the electron-pair geometry. (c) The actual bond angles deviate slightly from the idealized angles because the lone pair takes up a larger region of space than do the single bonds, causing the HNH angle to be slightly smaller than 109.5°.

As seen in [link] , small distortions from the ideal angles in [link] can result from differences in repulsion between various regions of electron density. VSEPR theory predicts these distortions by establishing an order of repulsions and an order of the amount of space occupied by different kinds of electron pairs. The order of electron-pair repulsions from greatest to least repulsion is:

lone pair-lone pair > lone pair-bonding pair > bonding pair-bonding pair

This order of repulsions determines the amount of space occupied by different regions of electrons. A lone pair of electrons occupies a larger region of space than the electrons in a triple bond; in turn, electrons in a triple bond occupy more space than those in a double bond, and so on. The order of sizes from largest to smallest is:

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
how do you find theWhat are the wavelengths and energies per photon of two lines
caroline Reply
The eyes of some reptiles are sensitive to 850 nm light. If the minimum energy to trigger the receptor at this wavelength is 3.15 x 10-14 J, what is the minimum number of 850 nm photons that must hit the receptor in order for it to be triggered?
razzyd Reply
A teaspoon of the carbohydrate sucrose contains 16 calories, what is the mass of one teaspoo of sucrose if the average number of calories for carbohydrate is 4.1 calories/g?
ifunanya Reply
4. On the basis of dipole moments and/or hydrogen bonding, explain in a qualitative way the differences in the boiling points of acetone (56.2 °C) and 1-propanol (97.4 °C), which have similar molar masses
Kyndall Reply
Calculate the bond order for an ion with this configuration: (?2s)2(??2s)2(?2px)2(?2py,?2pz)4(??2py,??2pz)3
Gabe Reply
Which of the following will increase the percent of HF that is converted to the fluoride ion in water? (a) addition of NaOH (b) addition of HCl (c) addition of NaF
Tarun Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Ut austin - principles of chemistry. OpenStax CNX. Mar 31, 2016 Download for free at http://legacy.cnx.org/content/col11830/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Ut austin - principles of chemistry' conversation and receive update notifications?