# 14.4 Eigenfunctions of lti systems

 Page 1 / 1
An introduction to eigenvalues and eigenfunctions for Linear Time Invariant systems.

## Introduction

Hopefully you are familiar with the notion of the eigenvectors of a "matrix system," if not they do a quick review of eigen-stuff . We can develop the same ideas for LTI systems acting on signals. A linear time invariant (LTI) system $ℋ$ operating on a continuous input $f(t)$ to produce continuous time output $y(t)$

$ℋ(f(t))=y(t)$

is mathematically analogous to an $N$ x $N$ matrix $A$ operating on a vector $x\in {ℂ}^{N}$ to produce another vector $b\in {ℂ}^{N}$ (seeMatrices and LTI Systemsfor an overview).

$Ax=b$

Just as an eigenvector of $A$ is a $v\in {ℂ}^{N}$ such that $Av=\lambda v$ , $\lambda \in \mathbb{C}$ ,

we can define an eigenfunction (or eigensignal ) of an LTI system $ℋ$ to be a signal $f(t)$ such that
$\forall \lambda , \lambda \in \mathbb{C}\colon ℋ(f(t))=\lambda f(t)$

Eigenfunctions are the simplest possible signals for $ℋ$ to operate on: to calculate the output, we simply multiply the input by a complex number $\lambda$ .

## Eigenfunctions of any lti system

The class of LTI systems has a set of eigenfunctions in common: the complex exponentials $e^{st}$ , $s\in \mathbb{C}$ are eigenfunctions for all LTI systems.

$ℋ(e^{st})={\lambda }_{s}e^{st}$

While $\{\forall s, s\in \mathbb{C}\colon e^{st}\}$ are always eigenfunctions of an LTI system, they are not necessarily the only eigenfunctions.

We can prove [link] by expressing the output as a convolution of the input $e^{st}$ and the impulse response $h(t)$ of $ℋ$ :

$ℋ(e^{st})=\int_{()} \,d \tau$ h τ s t τ τ h τ s t s τ s t τ h τ s τ
Since the expression on the right hand side does not depend on $t$ , it is a constant, ${\lambda }_{s}()$ . Therefore
$ℋ(e^{st})={\lambda }_{s}e^{st}$
The eigenvalue ${\lambda }_{s}()$ is a complex number that depends on the exponent $s$ and, of course, the system $ℋ$ . To make these dependencies explicit, we will use the notation $H(s)\equiv {\lambda }_{s}()$ .

Since the action of an LTI operator on its eigenfunctions $e^{st}$ is easy to calculate and interpret, it is convenient to represent an arbitrary signal $f(t)$ as a linear combination of complex exponentials. The Fourier series gives us this representation for periodic continuous timesignals, while the (slightly more complicated) Fourier transform lets us expand arbitrary continuous time signals.

how can chip be made from sand
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Got questions? Join the online conversation and get instant answers!