# Review of linear algebra

 Page 2 / 2

## Dimension

Let $V$ be a vector space with basis $B$ . The dimension of $V$ , denoted $\mathrm{dim}(V)$ , is the cardinality of $B$ .

Every vector space has a basis.

Every basis for a vector space has the same cardinality.

$\implies \mathrm{dim}(V)$ is well-defined .

If $\mathrm{dim}(V)$ , we say $V$ is finite dimensional .

## Examples

vector space field of scalars dimension
$\mathbb{R}^{N}$ $\mathbb{R}$
$\mathbb{C}^{N}$ $\mathbb{C}$
$\mathbb{C}^{N}$ $\mathbb{R}$

Every subspace is a vector space, and therefore has its own dimension.

Suppose $(S=\{{u}_{1}, , {u}_{k}\})\subseteq V$ is a linearly independent set. Then $\mathrm{dim}()=$

## Facts

• If $S$ is a subspace of $V$ , then $\mathrm{dim}(S)\le \mathrm{dim}(V)$ .
• If $\mathrm{dim}(S)=\mathrm{dim}(V)$ , then $S=V$ .

## Direct sums

Let $V$ be a vector space, and let $S\subseteq V$ and $T\subseteq V$ be subspaces.

We say $V$ is the direct sum of $S$ and $T$ , written $V=(S, T)$ , if and only if for every $v\in V$ , there exist unique $s\in S$ and $t\in T$ such that $v=s+t$ .

If $V=(S, T)$ , then $T$ is called a complement of $S$ .

$V={C}^{}=\left\{f:\mathbb{R}\mathbb{R}|f\text{is continuous}\right\}$ $S=\text{even funcitons in}{C}^{}$ $T=\text{odd funcitons in}{C}^{}$ $f(t)=\frac{1}{2}(f(t)+f(-t))+\frac{1}{2}(f(t)-f(-t))$ If $f=g+h={g}^{}+{h}^{}$ , $g\in S$ and ${g}^{}\in S$ , $h\in T$ and ${h}^{}\in T$ , then $g-{g}^{}={h}^{}-h$ is odd and even, which implies $g={g}^{}$ and $h={h}^{}$ .

## Facts

• Every subspace has a complement
• $V=(S, T)$ if and only if
• $S\cap T=\{0\}$
• $=V$
• If $V=(S, T)$ , and $\mathrm{dim}(V)$ , then $\mathrm{dim}(V)=\mathrm{dim}(S)+\mathrm{dim}(T)$

Invoke a basis.

## Norms

Let $V$ be a vector space over $F$ . A norm is a mapping $(V, F)$ , denoted by $()$ , such that forall $u\in V$ , $v\in V$ , and $\in F$

• $(u)> 0$ if $u\neq 0$
• $(u)=\left|\right|(u)$
• $(u+v)\le (u)+(v)$

## Examples

Euclidean norms:

$x\in \mathbb{R}^{N}$ : $(x)=\sum_{i=1}^{N} {x}_{i}^{2}^{\left(\frac{1}{2}\right)}$ $x\in \mathbb{C}^{N}$ : $(x)=\sum_{i=1}^{N} \left|{x}_{i}\right|^{2}^{\left(\frac{1}{2}\right)}$

## Induced metric

Every norm induces a metric on $V$ $d(u, v)\equiv (u-v)$ which leads to a notion of "distance" between vectors.

## Inner products

Let $V$ be a vector space over $F$ , $F=\mathbb{R}$ or $\mathbb{C}$ . An inner product is a mapping $V\times VF$ , denoted $\dot$ , such that

• $v\dot v\ge 0$ , and $(v\dot v=0, v=0)$
• $u\dot v=\overline{v\dot u}$
• $au+bv\dot w=a(u\dot w)+b(v\dot w)$

## Examples

$\mathbb{R}^{N}$ over: $x\dot y=x^Ty=\sum_{i=1}^{N} {x}_{i}{y}_{i}$

$\mathbb{C}^{N}$ over: $x\dot y=(x)y=\sum_{i=1}^{N} \overline{{x}_{i}}{y}_{i}$

If $(x=\left(\begin{array}{c}{x}_{1}\\ \\ {x}_{N}\end{array}\right))\in \mathbb{C}$ , then $(x)\equiv \left(\begin{array}{c}\overline{{x}_{1}}\\ \\ \overline{{x}_{N}}\end{array}\right)^T$ is called the "Hermitian," or "conjugatetranspose" of $x$ .

## Triangle inequality

If we define $(u)=u\dot u$ , then $(u+v)\le (u)+(v)$ Hence, every inner product induces a norm.

## Cauchy-schwarz inequality

For all $u\in V$ , $v\in V$ , $\left|u\dot v\right|\le (u)(v)$ In inner product spaces, we have a notion of the angle between two vectors: $((u, v)=\arccos \left(\frac{u\dot v}{(u)(v)}\right))\in \left[0 , 2\pi \right)$

## Orthogonality

$u$ and $v$ are orthogonal if $u\dot v=0$ Notation: $(u, v)$ .

If in addition $(u)=(v)=1$ , we say $u$ and $v$ are orthonormal .

In an orthogonal (orthonormal) set , each pair of vectors is orthogonal (orthonormal).

## Orthonormal bases

An Orthonormal basis is a basis $\{{v}_{i}\}$ such that ${v}_{i}\dot {v}_{i}={}_{ij}=\begin{cases}1 & \text{if i=j}\\ 0 & \text{if i\neq j}\end{cases}$

The standard basis for $\mathbb{R}^{N}$ or $\mathbb{C}^{N}$

The normalized DFT basis ${u}_{k}=\frac{1}{\sqrt{N}}\left(\begin{array}{c}1\\ e^{-(i\times 2\pi \frac{k}{N})}\\ \\ e^{-(i\times 2\pi \frac{k}{N}(N-1))}\end{array}\right)$

## Expansion coefficients

If the representation of $v$ with respect to $\{{v}_{i}\}$ is $v=\sum {a}_{i}{v}_{i}$ then ${a}_{i}={v}_{i}\dot v$

## Gram-schmidt

Every inner product space has an orthonormal basis. Any (countable) basis can be made orthogonal by theGram-Schmidt orthogonalization process.

## Orthogonal compliments

Let $S\subseteq V$ be a subspace. The orthogonal compliment $S$ is ${S}^{}=\{u\colon u\in V\land (u\dot v=0)\land \forall v\colon v\in S\}$ ${S}^{}$ is easily seen to be a subspace.

If $\mathrm{dim}(v)$ , then $V=(S, {S}^{})$ .

If $\mathrm{dim}(v)$ , then in order to have $V=(S, {S}^{})$ we require $V$ to be a Hilbert Space .

## Linear transformations

Loosely speaking, a linear transformation is a mapping from one vector space to another that preserves vector space operations.

More precisely, let $V$ , $W$ be vector spaces over the same field $F$ . A linear transformation is a mapping $T:VW$ such that $T(au+bv)=aT(u)+bT(v)$ for all $a\in F$ , $b\in F$ and $u\in V$ , $v\in V$ .

In this class we will be concerned with linear transformations between (real or complex) Euclidean spaces , or subspaces thereof.

## Image

$()$ T w w W T v w for some v

## Nullspace

Also known as the kernel: $\mathrm{ker}(T)=\{v\colon v\in V\land (T(v)=0)\}$

Both the image and the nullspace are easily seen to be subspaces.

## Rank

$\mathrm{rank}(T)=\mathrm{dim}(())$ T

## Nullity

$\mathrm{null}(T)=\mathrm{dim}(\mathrm{ker}(T))$

## Rank plus nullity theorem

$\mathrm{rank}(T)+\mathrm{null}(T)=\mathrm{dim}(V)$

## Matrices

Every linear transformation $T$ has a matrix representation . If $T:{𝔼}^{N}{𝔼}^{M}$ , $𝔼=\mathbb{R}$ or $\mathbb{C}$ , then $T$ is represented by an $M\times N$ matrix $A=\begin{pmatrix}{a}_{11} & & {a}_{1N}\\ & & \\ {a}_{M1} & & {a}_{MN}\\ \end{pmatrix}$ where $\left(\begin{array}{c}{a}_{1i}\\ \\ {a}_{Mi}\end{array}\right)=T({e}_{i})$ and ${e}_{i}=\left(\begin{array}{c}0\\ \\ 1\\ \\ 0\end{array}\right)$ is the $i^{\mathrm{th}}$ standard basis vector.

A linear transformation can be represented with respect to any bases of $𝔼^{N}$ and $𝔼^{M}$ , leading to a different $A$ . We will always represent a linear transformation using the standard bases.

## Column span

$\mathrm{colspan}(A)==()$ A

## Duality

If $A:{\mathbb{R}}^{N}{\mathbb{R}}^{M}$ , then $\mathrm{ker}(A)^{}=()$ A

If $A:{\mathbb{C}}^{N}{\mathbb{C}}^{M}$ , then $\mathrm{ker}(A)^{}=()$ A

## Inverses

The linear transformation/matrix $A$ is invertible if and only if there exists a matrix $B$ such that $AB=BA=I$ (identity).

Only square matrices can be invertible.

Let $A:{𝔽}^{N}{𝔽}^{N}$ be linear, $𝔽=\mathbb{R}$ or $\mathbb{C}$ . The following are equivalent:

• $A$ is invertible (nonsingular)
• $\mathrm{rank}(A)=N$
• $\mathrm{null}(A)=0$
• $\det A\neq 0$
• The columns of $A$ form a basis.

If $A^{(-1)}=A^T$ (or $(A)$ in the complex case), we say $A$ is orthogonal (or unitary ).

what is math number
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Need help solving this problem (2/7)^-2
x+2y-z=7
Sidiki
what is the coefficient of -4×
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years? Kala Reply lim x to infinity e^1-e^-1/log(1+x) given eccentricity and a point find the equiation Moses Reply 12, 17, 22.... 25th term Alexandra Reply 12, 17, 22.... 25th term Akash College algebra is really hard? Shirleen Reply Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table. Carole I'm 13 and I understand it great AJ I am 1 year old but I can do it! 1+1=2 proof very hard for me though. Atone hi Adu Not really they are just easy concepts which can be understood if you have great basics. I am 14 I understood them easily. Vedant find the 15th term of the geometric sequince whose first is 18 and last term of 387 Jerwin Reply I know this work salma The given of f(x=x-2. then what is the value of this f(3) 5f(x+1) virgelyn Reply hmm well what is the answer Abhi If f(x) = x-2 then, f(3) when 5f(x+1) 5((3-2)+1) 5(1+1) 5(2) 10 Augustine how do they get the third part x = (32)5/4 kinnecy Reply make 5/4 into a mixed number, make that a decimal, and then multiply 32 by the decimal 5/4 turns out to be AJ how Sheref can someone help me with some logarithmic and exponential equations. Jeffrey Reply sure. what is your question? ninjadapaul 20/(×-6^2) Salomon okay, so you have 6 raised to the power of 2. what is that part of your answer ninjadapaul I don't understand what the A with approx sign and the boxed x mean ninjadapaul it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared Salomon I'm not sure why it wrote it the other way Salomon I got X =-6 Salomon ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6 ninjadapaul oops. ignore that. ninjadapaul so you not have an equal sign anywhere in the original equation? ninjadapaul hmm Abhi is it a question of log Abhi 🤔. Abhi I rally confuse this number And equations too I need exactly help salma But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends salma Commplementary angles Idrissa Reply hello Sherica im all ears I need to learn Sherica right! what he said ⤴⤴⤴ Tamia hii Uday hi salma hi Ayuba Hello opoku hi Ali greetings from Iran Ali salut. from Algeria Bach hi Nharnhar A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place. Kimberly Reply Jeannette has$5 and \$10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
What is the expressiin for seven less than four times the number of nickels
How do i figure this problem out.
how do you translate this in Algebraic Expressions
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Got questions? Join the online conversation and get instant answers!