# 11.1 Graphs, trigonometric identities, and solving trigonometric

 Page 1 / 12

## History of trigonometry

Work in pairs or groups and investigate the history of the development of trigonometry. Describe the various stages of development and how different cultures used trigonometry to improve their lives.

The works of the following people or cultures can be investigated:

1. Cultures
1. Ancient Egyptians
2. Mesopotamians
3. Ancient Indians of the Indus Valley
2. People
2. Hipparchus (circa 150 BC)
3. Ptolemy (circa 100)
4. Aryabhata (circa 499)
5. Omar Khayyam (1048-1131)
7. Nasir al-Din (13th century)
8. al-Kashi and Ulugh Beg (14th century)
9. Bartholemaeus Pitiscus (1595)

## Functions of the form $y=sin\left(k\theta \right)$

In the equation, $y=sin\left(k\theta \right)$ , $k$ is a constant and has different effects on the graph of the function. The general shape of the graph of functions of this form is shown in [link] for the function $f\left(\theta \right)=sin\left(2\theta \right)$ .

## Functions of the form $y=sin\left(k\theta \right)$

On the same set of axes, plot the following graphs:

1. $a\left(\theta \right)=sin0,5\theta$
2. $b\left(\theta \right)=sin1\theta$
3. $c\left(\theta \right)=sin1,5\theta$
4. $d\left(\theta \right)=sin2\theta$
5. $e\left(\theta \right)=sin2,5\theta$

Use your results to deduce the effect of $k$ .

You should have found that the value of $k$ affects the period or frequency of the graph. Notice that in the case of the sine graph, the period (length of one wave) is given by $\frac{{360}^{\circ }}{k}$ .

These different properties are summarised in [link] .

 $k>0$ $k<0$

## Domain and range

For $f\left(\theta \right)=sin\left(k\theta \right)$ , the domain is $\left\{\theta :\theta \in \mathbb{R}\right\}$ because there is no value of $\theta \in \mathbb{R}$ for which $f\left(\theta \right)$ is undefined.

The range of $f\left(\theta \right)=sin\left(k\theta \right)$ is $\left\{f\left(\theta \right):f\left(\theta \right)\in \left[-1,1\right]\right\}$ .

## Intercepts

For functions of the form, $y=sin\left(k\theta \right)$ , the details of calculating the intercepts with the $y$ axis are given.

There are many $x$ -intercepts.

The $y$ -intercept is calculated by setting $\theta =0$ :

$\begin{array}{ccc}\hfill y& =& sin\left(k\theta \right)\hfill \\ \hfill {y}_{int}& =& sin\left(0\right)\hfill \\ & =& 0\hfill \end{array}$

## Functions of the form $y=cos\left(k\theta \right)$

In the equation, $y=cos\left(k\theta \right)$ , $k$ is a constant and has different effects on the graph of the function. The general shape of the graph of functions of this form is shown in [link] for the function $f\left(\theta \right)=cos\left(2\theta \right)$ .

## Functions of the form $y=cos\left(k\theta \right)$

On the same set of axes, plot the following graphs:

1. $a\left(\theta \right)=cos0,5\theta$
2. $b\left(\theta \right)=cos1\theta$
3. $c\left(\theta \right)=cos1,5\theta$
4. $d\left(\theta \right)=cos2\theta$
5. $e\left(\theta \right)=cos2,5\theta$

Use your results to deduce the effect of $k$ .

You should have found that the value of $k$ affects the period or frequency of the graph. The period of the cosine graph is given by $\frac{{360}^{\circ }}{k}$ .

These different properties are summarised in [link] .

 $k>0$ $k<0$

## Domain and range

For $f\left(\theta \right)=cos\left(k\theta \right)$ , the domain is $\left\{\theta :\theta \in \mathbb{R}\right\}$ because there is no value of $\theta \in \mathbb{R}$ for which $f\left(\theta \right)$ is undefined.

The range of $f\left(\theta \right)=cos\left(k\theta \right)$ is $\left\{f\left(\theta \right):f\left(\theta \right)\in \left[-1,1\right]\right\}$ .

## Intercepts

For functions of the form, $y=cos\left(k\theta \right)$ , the details of calculating the intercepts with the $y$ axis are given.

The $y$ -intercept is calculated as follows:

where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
Got questions? Join the online conversation and get instant answers!