<< Chapter < Page Chapter >> Page >
Explains what a direct memory access is.

Direct memory access is system that can control the memory system without using the CPU. On a specified stimulus, the module will move data from one memory location or region to another memory location or region. While it is limited in its flexibility, there are many situations where automated memory access is much faster than using the CPU to manage the transfers. Systems like the ADC, DAC and PWM capturing all require frequent and regular movements of memory out of their respective systems. The DMA can be configured to handle moving the collected data out of the peripheral module and into more useful memory locations (like arrays). Only memory can be accessed this way, but most peripheral systems, data registers, and control registers are accessed as if they were memory. The DMA is intended to be used in low power mode because it uses the same memory bus as the CPU and only one or the other can use the memory at the same time.

The DMA system is organized into three largely independent parts. Though the three compete for the same memory bus, they have can be configured for independent triggers and memory regions.

Dma operation

There are three independent channels for DMA transfers. Each channel receives its trigger for the transfer through a large multiplexer that chooses from among a large number of signals. When these signals activate, the transfer occurs. The DMAxTSELx bits of the DMA Control Register 0 (DMACTL0). The DMA controller receives the trigger signal but will ignore it under certain conditions. This is necessary to reserve the memory bus for reprogramming and non-maskable interrupts etc. The controller also handles conflicts for simultaneous triggers. The priorities can be adjusted using the DMA Control Register 1 (DMACTL1). When multiple triggers happen simultaneously, they occur in order of module priority. The DMA trigger is then passed to the module whose trigger activated. The DMA channel will copy the data from the starting memory location or block to the destination memory location or block. There are many variations on this, and they are controlled by the DMA Channel x Control Register (DMAxCTL):

  • Single Transfer - each trigger causes a single transfer. The module will disable itself when DMAxSZ number of transfers have occurred (setting it to zero prevents transfer). The DMAxSA and DMAxDA registers set the addresses to be transferred to and from. The DMAxCTL register also allows these addresses to be incremented or decremented by 1 or 2 bytes with each transfer. This transfer halts the CPU.
  • Block Transfer - an entire block is transferred on each trigger. The module disables itself when this block transfer is complete. This transfer halts the CPU, and will transfer each memory location one at a time. This mode disables the module when the transfer is complete.
  • Burst-Block Transfer - this is very similar to Block Transfer mode except that the CPU and the DMA transfer can interleave their operation. This reduces the CPU to 20% while the DMA is going on, but the CPU will not be stopped altogether. The interrupt occurs when the block has completely transferred. This mode disables the module when the transfer is complete.
  • Repeated Single Transfer - the same as Single Transfer mode above except that the module is not disabled when the transfer is complete.
  • Repeated Block Transfer - the same as Block Transfer mode above except that the module is not disabled when the transfer is complete.
  • Repeated Burst-Block Transfer - the same as Burst Block Transfer mode above except that the module is not disabled when the transfer is complete.

Writing to flash requires setting the DMAONFETCH bit. If this is not done, the results of the DMA operation are “unpredictable.” Also, the behavior and settings of the DMA module should only be modified when the module is disabled. The setting and triggers are highly configurable, allowing both edge and level triggering. The variety of settings is detailed in the DMA chapter of the users guide. Also, it is important to note that interrupts will not be acknowledged during the DMA transfer because the CPU is not active. Each DMA channel has its own flag, but the interrupt vector is shared with the DAC. This necessitates some software checking to handle interrupts with both modules enabled.

Questions & Answers

How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
Difference between extinct and extici spicies
Amanpreet Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Microcontroller and embedded systems laboratory. OpenStax CNX. Feb 11, 2006 Download for free at http://cnx.org/content/col10215/1.29
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Microcontroller and embedded systems laboratory' conversation and receive update notifications?

Ask