<< Chapter < Page Chapter >> Page >

Concept in action

Watch this video to see the process of seed production in gymnosperms.

Diversity of gymnosperms

Modern gymnosperms are classified into four major divisions and comprise about 1,000 described species. Coniferophyta, Cycadophyta, and Ginkgophyta are similar in their production of secondary cambium (cells that generate the vascular system of the trunk or stem) and their pattern of seed development, but are not closely related phylogenetically to each other. Gnetophyta are considered the closest group to angiosperms because they produce true xylem tissue that contains both tracheids and vessel elements.

Conifers

Conifers are the dominant phylum of gymnosperms, with the most variety of species. Most are tall trees that usually bear scale-like or needle-like leaves. The thin shape of the needles and their waxy cuticle limits water loss through transpiration. Snow slides easily off needle-shaped leaves, keeping the load light and decreasing breaking of branches. These adaptations to cold and dry weather explain the predominance of conifers at high altitudes and in cold climates. Conifers include familiar evergreen trees, such as pines, spruces, firs, cedars, sequoias, and yews ( [link] ). A few species are deciduous and lose their leaves all at once in fall. The European larch and the tamarack are examples of deciduous conifers. Many coniferous trees are harvested for paper pulp and timber. The wood of conifers is more primitive than the wood of angiosperms; it contains tracheids, but no vessel elements, and is referred to as “soft wood.”

 Photo A shows a tall spruce tree covered in pine cones. Photo B shows a sequoia with a tall, broad trunk and branches starting high up the trunk. Photo C shows a juniper tree with a gnarled trunk. Part D shows a forest of tamarack with yellow needles.
Conifers are the dominant form of vegetation in cold or arid environments and at high altitudes. Shown here are the (a) evergreen spruce, (b) sequoia, (c) juniper, and (d) a deciduous gymnosperm: the tamarack Larix larcinia . Notice the yellow leaves of the tamarack. (credit b: modification of work by Alan Levine; credit c: modification of work by Wendy McCormac; credit d: modification of work by Micky Zlimen)

Cycads

Cycads thrive in mild climates and are often mistaken for palms because of the shape of their large, compound leaves. They bear large cones, and unusually for gymnosperms, may be pollinated by beetles, rather than wind. They dominated the landscape during the age of dinosaurs in the Mesozoic era (251–65.5 million years ago). Only a hundred or so cycad species persisted to modern times. They face possible extinction, and several species are protected through international conventions. Because of their attractive shape, they are often used as ornamental plants in gardens ( [link] ).

 Photo shows a cycad with leaves resembling those of a palm tree. The compound leaves radiate out from a central trunk. Two large orange cones are in the center.
This Encephalartos ferox cycad exhibits large cones. (credit: Wendy Cutler)

Gingkophytes

The single surviving species of ginkgophyte is the Ginkgo biloba ( [link] ). Its fan-shaped leaves, unique among seed plants because they feature a dichotomous venation pattern, turn yellow in autumn and fall from the plant. For centuries, Buddhist monks cultivated Ginkgo biloba, ensuring its preservation. It is planted in public spaces because it is unusually resistant to pollution. Male and female organs are found on separate plants. Usually, only male trees are planted by gardeners because the seeds produced by the female plant have an off-putting smell of rancid butter.

Illustration shows the green, fan-shaped leaves of Ginkgo biloba.
This plate from the 1870 book Flora Japonica, Sectio Prima (Tafelband) depicts the leaves and fruit of Gingko biloba , as drawn by Philipp Franz von Siebold and Joseph Gerhard Zuccarini.

Gnetophytes

Gnetophytes are the closest relatives to modern angiosperms, and include three dissimilar genera of plants. Like angiosperms, they have broad leaves. Gnetum species are mostly vines in tropical and subtropical zones. The single species of Welwitschia is an unusual, low-growing plant found in the deserts of Namibia and Angola. It may live for up to 2000 years. The genus Ephedra is represented in North America in dry areas of the southwestern United States and Mexico ( [link] ). Ephedra’s small, scale-like leaves are the source of the compound ephedrine, which is used in medicine as a potent decongestant. Because ephedrine is similar to amphetamines, both in chemical structure and neurological effects, its use is restricted to prescription drugs. Like angiosperms, but unlike other gymnosperms, all gnetophytes possess vessel elements in their xylem.

Photo shows Mormon tea, a short, scrubby plant with yellow branches radiating out from a central bundle.
Ephedra viridis , known by the common name Mormon tea, grows in the western United States. (credit: US National Park Service, USDA-NRCS PLANTS Database)

Concept in action

Watch this BBC video describing the amazing strangeness of Welwitschia.

Section summary

Gymnosperms are heterosporous seed plants that produce naked seeds. They appeared in the Carboniferous period (359–299 million years ago) and were the dominant plant life during the Mesozoic era (251–65.5 million years ago). Modern-day gymnosperms belong to four divisions. The division Coniferophyta—the conifers—are the predominant woody plants at high altitudes and latitudes. Cycads resemble palm trees and grow in tropical climates. Gingko biloba is the only species of the division Gingkophyta. The last division, the Gnetophytes, is a diverse group of species that produce vessel elements in their wood.

Art connections

[link] At what stage does the diploid zygote form?

  1. When the female cone begins to bud from the tree
  2. When the sperm nucleus and the egg nucleus fuse
  3. When the seeds drop from the tree
  4. When the pollen tube begins to grow

[link] B. The diploid zygote forms after the pollen tube has finished forming so that the male generative nucleus (sperm) can fuse with the female egg.

Got questions? Get instant answers now!

Questions & Answers

Cell wall is the rigid layer enclosed by membranes of plants and prokayortic cell, it maintains the shape of the cell and serve as a protective barrier.
chizoba Reply
ECOLOGY: is a branch of biology that studies the interactions among organisms and their biophysical environment, which includes both biotic and abiotic components. 
chizoba
via nutrient cycles and energy flows. For instance, the energy from the sun is captured by plants through photosynthesis. Photosynthesis is a biological process through which plants manufacture their own food with the aid of light from the sun and frc sources (e.g. cabon dioxide and water)
chizoba
What is cell wall
Taiwo Reply
cell wall is the outemost rigid covering of the plants ,that provides protection to the plants.
Aditi
what is ecology, ecosystem?
Nkeng Reply
what is digestive system
Lucky Reply
digestive system is the human syman system that icludes esopuges stomach o braking down of food in to useful substance to our body
samrawit
definition of biology basics
Ritu Reply
the potential energy of a molecule can be inquired by their number of?
Jesus Reply
what is the full meaning of RNA
Ayo Reply
ribose nucleic acid
Nikita
Ribonucleic acid
Jesus
Ribo Nucleic Acid
Aditi
discuss, describe at least three (3) methods that could be used to improve photosynthesis..
Marvel Reply
Improve the efficiency with which plants capture light Improve the efficiency by which plants turn light into energy The smart canopy concept develop crop planting schemes that increase the penetration of sunlight into lower-level leaves.
Jesus
what is osmosis
Aon Reply
movement of water molecule from higher to lower concentration through a semipereable membrene.
Dr
what of in the case of solute
Aon
osmosis is the movement of molecules from higher concentration region to lower concentration region through semi-permeable membrane.
Broad
in case of solute means that water moves from the region with lower solutes to the region with higher solute. so it is vice versa to water.
Broad
what are the hydrophilic and hydrophobic region of the plasma membrane?
Samuel Reply
hydrophilic in other word it called water loving and hydrophobic region other word is region that does not contact with water in the plasma membrane.
Broad
the phospholipids
Jesus
recognizing living things
Emmanuel Reply
Species A has 12 pairs of chromosomes and Species B has 11 pairs of chromosomes. Explain what occurs during mitosis and during meiosis in the hybrid that allows normal development and growth from zygote to adult, but causes the adults to be sterile.
Christina Reply
what is the origin of angiosperms?
Broad
unknown group of gymnosperms of triassic period.
Aditi
ouky but what about the concept of monophyletic and polyphyletic? where angiosperms is between that two concept?
Broad
Why does water move through a membrane?
Christina Reply
Explanation: Water can diffuse through the lipid bilayer even though it's polar because it's a very small molecule. Water can also pass through the cell membrane by osmosis, because of the high osmotic pressure difference between the inside and the outside the cell
Babar
How many bones are in the human skeleton
Treasure Reply
203
Oyeleke
206
Babar
it is about 270 bones at birth and decreases to 206 bones in adulthood.
Nkeng
procce of digestion of proteins a long human alimentarycanal
Carson Reply
This is accomplished by enzymes through hydrolysis.
Jesus

Get the best Concepts of biology course in your pocket!





Source:  OpenStax, Concepts of biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11487/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology' conversation and receive update notifications?

Ask