<< Chapter < Page Chapter >> Page >
  • Define position, displacement, distance, and distance traveled.
  • Explain the relationship between position and displacement.
  • Distinguish between displacement and distance traveled.
  • Calculate displacement and distance given initial position, final position, and the path between the two.
Three people cycling along a canal. The blurred buildings in the background convey a sense of motion of the cyclists.
These cyclists in Vietnam can be described by their position relative to buildings and a canal. Their motion can be described by their change in position, or displacement, in the frame of reference. (credit: Suzan Black, Fotopedia)

Position

In order to describe the motion of an object, you must first be able to describe its position    —where it is at any particular time. More precisely, you need to specify its position relative to a convenient reference frame. Earth is often used as a reference frame, and we often describe the position of an object as it relates to stationary objects in that reference frame. For example, a rocket launch would be described in terms of the position of the rocket with respect to the Earth as a whole, while a professor’s position could be described in terms of where she is in relation to the nearby white board. (See [link] .) In other cases, we use reference frames that are not stationary but are in motion relative to the Earth. To describe the position of a person in an airplane, for example, we use the airplane, not the Earth, as the reference frame. (See [link] .)

Displacement

If an object moves relative to a reference frame (for example, if a professor moves to the right relative to a white board or a passenger moves toward the rear of an airplane), then the object’s position changes. This change in position is known as displacement    . The word “displacement” implies that an object has moved, or has been displaced.

Displacement

Displacement is the change in position of an object:

Δ x = x f x 0 , size 12{Δx=x rSub { size 8{f} } - x rSub { size 8{0} } } {}

where Δ x size 12{Δx} {} is displacement, x f size 12{x rSub { size 8{f} } } {} is the final position, and x 0 size 12{x rSub { size 8{0} } } {} is the initial position.

In this text the upper case Greek letter Δ size 12{Δ} {} (delta) always means “change in” whatever quantity follows it; thus, Δ x size 12{Δx} {} means change in position . Always solve for displacement by subtracting initial position x 0 size 12{x rSub { size 8{0} } } {} from final position x f size 12{x rSub { size 8{f} } } {} .

Note that the SI unit for displacement is the meter (m), but sometimes kilometers, miles, feet, and other units of length are used. Keep in mind that when units other than the meter are used in a problem, you may need to convert them into meters to complete the calculation.

The initial and final position of a professor as she moves to the right while writing on a whiteboard. Her initial position is 1 point 5 meters. Her final position is 3 point 5 meters. Her displacement is given by the equation delta x equals x sub f minus x sub 0 equals 2 point 0 meters.
A professor paces left and right while lecturing. Her position relative to Earth is given by x size 12{x} {} . The + 2 . 0 m size 12{+2 "." 0`m} {} displacement of the professor relative to Earth is represented by an arrow pointing to the right.

View of an airplane with an inset of the passengers sitting inside. A passenger has just moved from his seat and is now standing in the back. His initial position was 6 point 0 meters. His final position is 2 point 0 meters. His displacement is given by the equation delta x equals x sub f minus x sub 0 equals 4 point zero meters.
A passenger moves from his seat to the back of the plane. His location relative to the airplane is given by x size 12{x} {} . The 4 . 0 -m size 12{ - 4 "." 0"-m"} {} displacement of the passenger relative to the plane is represented by an arrow toward the rear of the plane.

Note that displacement has a direction as well as a magnitude. The professor’s displacement is 2.0 m to the right, and the airline passenger’s displacement is 4.0 m toward the rear. In one-dimensional motion, direction can be specified with a plus or minus sign. When you begin a problem, you should select which direction is positive (usually that will be to the right or up, but you are free to select positive as being any direction). The professor’s initial position is x 0 = 1 . 5 m size 12{x rSub { size 8{0} } =1 "." 5`m} {} and her final position is x f = 3 . 5 m size 12{x rSub { size 8{f} } =3 "." 5`m} {} . Thus her displacement is

Δ x = x f x 0 = 3 .5 m 1.5 m = + 2 .0 m . size 12{Δx=x"" lSub { size 8{f} } - x rSub { size 8{0} } =3 "." 5`m - 1 "." 5`"m "= +2 "." "0 m"} {}

In this coordinate system, motion to the right is positive, whereas motion to the left is negative. Similarly, the airplane passenger’s initial position is x 0 = 6 . 0 m and his final position is x f = 2 . 0 m size 12{x rSub { size 8{f} } =2 "." 0`m} {} , so his displacement is

Δ x = x f x 0 = 2 . 0 m 6 . 0 m = 4 . 0 m . size 12{Δx=x"" lSub { size 8{f} } - x rSub { size 8{0} } =2 "." 0`m - 6 "." 0`m= - 4 "." 0`m} {}

His displacement is negative because his motion is toward the rear of the plane, or in the negative x size 12{x} {} direction in our coordinate system.

Distance

Although displacement is described in terms of direction, distance is not. Distance is defined to be the magnitude or size of displacement between two positions . Note that the distance between two positions is not the same as the distance traveled between them. Distance traveled is the total length of the path traveled between two positions . Distance has no direction and, thus, no sign. For example, the distance the professor walks is 2.0 m. The distance the airplane passenger walks is 4.0 m.

A cyclist rides 3 km west and then turns around and rides 2 km east. (a) What is her displacement? (b) What distance does she ride? (c) What is the magnitude of her displacement?

Two diagrams side by side. To the left is a horizontal line, or x axis, with points for final position and initial position. Displacement 1, shown by an arrow pointing leftward, equals negative 3 kilometers. Displacement 2, shown by an arrow pointing rightward, equals 2 kilometers. To the right is a pair of x and y axes, showing that east is the positive x direction and west is the negative x direction.

(a) The rider’s displacement is Δ x = x f x 0 = −1 km . (The displacement is negative because we take east to be positive and west to be negative.)

(b) The distance traveled is 3 km + 2 km = 5 km size 12{"3 km "+" 2 km "=" 5 km"} {} .

(c) The magnitude of the displacement is 1 km size 12{1" km"} {} .

Section summary

  • Kinematics is the study of motion without considering its causes. In this chapter, it is limited to motion along a straight line, called one-dimensional motion.
  • Displacement is the change in position of an object.
  • In symbols, displacement Δ x is defined to be
    Δ x = x f x 0 ,
    where x 0 is the initial position and x f is the final position. In this text, the Greek letter Δ (delta) always means “change in” whatever quantity follows it. The SI unit for displacement is the meter (m). Displacement has a direction as well as a magnitude.
  • When you start a problem, assign which direction will be positive.
  • Distance is the magnitude of displacement between two positions.
  • Distance traveled is the total length of the path traveled between two positions.

Conceptual questions

Give an example in which there are clear distinctions among distance traveled, displacement, and magnitude of displacement. Specifically identify each quantity in your example.

Problems&Exercises

An x axis starts at 0 meters and ends at 12 meters. There are four points on the graph with displacement paths. Path A starts at 0 and stops at 7. Path B starts at 12 and ends at 7. Path C starts at 2, goes to 10, turns around and goes back to 8, then turns around again and stops at 11. Path D starts at 9, goes to 3, then turns around and stops at 5.

Find the following for path A in [link] : (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.

(a) 7 m

(b) 7 m

(c) + 7 m size 12{+7`m} {}

Find the following for path C in [link] : (a) The distance traveled. (b) The magnitude of the displacement from start to finish. (c) The displacement from start to finish.

(a) 13 m

(b) 9 m

(c) + 9 m size 12{+9`m} {}

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 5

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Kinematics. OpenStax CNX. Sep 11, 2015 Download for free at https://legacy.cnx.org/content/col11878/1.5
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Kinematics' conversation and receive update notifications?

Ask