# 6.3 Geometry  (Page 5/7)

 Page 5 / 7
$\begin{array}{ccc}\hfill PS& =& \sqrt{{\left({x}_{1}-{x}_{2}\right)}^{2}+{\left({y}_{1}-{y}_{2}\right)}^{2}}\hfill \\ & =& \sqrt{{\left(0-2\right)}^{2}+{\left(-0.5-1\right)}^{2}}\hfill \\ & =& \sqrt{{\left(-2\right)}^{2}+{\left(-1.5\right)}^{2}}\hfill \\ & =& \sqrt{4+2.25}\hfill \\ & =& \sqrt{6.25}\hfill \end{array}$

and

$\begin{array}{ccc}\hfill QS& =& \sqrt{{\left({x}_{1}-{x}_{2}\right)}^{2}+{\left({y}_{1}-{y}_{2}\right)}^{2}}\hfill \\ & =& \sqrt{{\left(0-\left(-2\right)\right)}^{2}+{\left(-0.5-\left(-2\right)\right)}^{2}}\hfill \\ & =& \sqrt{{\left(0+2\right)\right)}^{2}{+\left(-0.5+2\right)\right)}^{2}}\hfill \\ & =& \sqrt{{\left(2\right)\right)}^{2}{+\left(-1.5\right)\right)}^{2}}\hfill \\ & =& \sqrt{4+2.25}\hfill \\ & =& \sqrt{6.25}\hfill \end{array}$

It can be seen that $PS=QS$ as expected.

The following video provides a summary of the midpoint of a line.

## Co-ordinate geometry

1. In the diagram given the vertices of a quadrilateral are F(2;0), G(1;5), H(3;7) and I(7;2).
1. What are the lengths of the opposite sides of FGHI?
2. Are the opposite sides of FGHI parallel?
3. Do the diagonals of FGHI bisect each other?
2. A quadrialteral ABCD with vertices A(3;2), B(1;7), C(4;5) and D(1;3) is given.
2. Find the lengths of the sides of the quadrilateral.
3. ABCD is a quadrilateral with verticies A(0;3), B(4;3), C(5;-1) and D(-1;-1).
1. Show that:
2. AB $\parallel$ DC
2. What name would you give to ABCD?
3. Show that the diagonals AC and BD do not bisect each other.
4. P, Q, R and S are the points (-2;0), (2;3), (5;3), (-3;-3) respectively.
1. Show that:
1. SR = 2PQ
2. SR $\parallel$ PQ
2. Calculate:
1. PS
2. QR
5. EFGH is a parallelogram with verticies E(-1;2), F(-2;-1) and G(2;0). Find the co-ordinates of H by using the fact that the diagonals of a parallelogram bisect each other.

## Transformations

In this section you will learn about how the co-ordinates of a point change when the point is moved horizontally and vertically on the Cartesian plane. You will also learn about what happens to the co-ordinates of a point when it is reflected on the $x$ -axis, $y$ -axis and the line $y=x$ .

## Translation of a point

When something is moved in a straight line, we say that it is translated . What happens to the co-ordinates of a point that is translated horizontally or vertically?

## Discussion : translation of a point vertically

Complete the table, by filling in the co-ordinates of the points shown in the figure.

 Point $x$ co-ordinate $y$ co-ordinate A B C D E F G

What do you notice about the $x$ co-ordinates? What do you notice about the $y$ co-ordinates? What would happen to the co-ordinates of point A, if it was moved to the position of point G?

When a point is moved vertically up or down on the Cartesian plane, the $x$ co-ordinate of the point remains the same, but the $y$ co-ordinate changes by the amount that the point was moved up or down.

For example, in [link] Point A is moved 4 units upwards to the position marked by G. The new $x$ co-ordinate of point A is the same ( $x$ =1), but the new $y$ co-ordinate is shifted in the positive $y$ direction 4 units and becomes $y$ =-2 +4 =2. The new co-ordinates of point A are therefore G(1;2). Similarly, for point B that is moved downwards by 5 units, the $x$ co-ordinate is the same ( $x=-2,5$ ), but the $y$ co-ordinate is shifted in the negative $y$ -direction by 5 units. The new $y$ co-ordinate is therefore $y$ =2,5 -5 =-2,5.

anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!