# 9.12 Practice 1: single mean, known population standard deviation

 Page 1 / 1
This module provides a practice of Hypothesis Testing of Single Mean and Single Proportion as a part of Collaborative Statistics collection (col10522) by Barbara Illowsky and Susan Dean.

## Student learning outcomes

• The student will conduct a hypothesis test of a single mean with known population standard deviation.

## Given

Suppose that a recent article stated that the mean time spent in jail by a first–time convicted burglar is 2.5 years. A study was then done to see if the mean time has increased in the new century. A random sample of 26 first–time convicted burglars in a recent year was picked. The mean length of time in jail from the survey was 3 years with a standard deviation of 1.8 years. Suppose that it is somehow known that the population standard deviation is 1.5. Conduct a hypothesis test to determine if the mean length of jail time has increased. The distribution of the population is normal.

## Hypothesis testing: single mean

Is this a test of means or proportions?

Means

State the null and alternative hypotheses.

• ${H}_{o}$ :
• ${H}_{a}$ :

• ${H}_{o}:\mu =2\text{.}5$ (or, ${H}_{o}:\mu \le 2\text{.}5$ )
• ${H}_{a}:\mu >2\text{.}5$

Is this a right-tailed, left-tailed, or two-tailed test? How do you know?

right-tailed

What symbol represents the Random Variable for this test?

$\overline{X}$

In words, define the Random Variable for this test.

The mean time spent in jail for 26 first time convicted burglars

Is the population standard deviation known and, if so, what is it?

Yes, 1.5

Calculate the following:

• $\overline{x}=$
• $\sigma =$
• ${s}_{x}=$
• $n=$

• 3
• 1.5
• 1.8
• 26

Since both $\sigma$ and ${s}_{x}$ are given, which should be used? In 1 -2 complete sentences, explain why.

$\sigma$

State the distribution to use for the hypothesis test.

$\overline{X}\text{~}N\left(2\text{.}5\text{,}\frac{1.5}{\sqrt{\text{26}}}\right)$

Sketch a graph of the situation. Label the horizontal axis. Mark the hypothesized mean and the sample mean $\overline{x}$ . Shade the area corresponding to the p-value.

Find the p-value.

0.0446

At a pre-conceived $\alpha =0\text{.}\text{05}$ , what is your:

• Decision:
• Reason for the decision:
• Conclusion (write out in a complete sentence):

• Reject the null hypothesis

## Discussion questions

Does it appear that the mean jail time spent for first time convicted burglars has increased? Why or why not?

Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
1 It is estimated that 30% of all drivers have some kind of medical aid in South Africa. What is the probability that in a sample of 10 drivers: 3.1.1 Exactly 4 will have a medical aid. (8) 3.1.2 At least 2 will have a medical aid. (8) 3.1.3 More than 9 will have a medical aid.