<< Chapter < Page Chapter >> Page >
This module discusses the properties of continuous time convolution.

Introduction

We have already shown the important role that continuous time convolution plays in signal processing. This section provides discussion and proof of some of the important properties of continuous time convolution. Analogous properties can be shown for continuous time circular convolution with trivial modification of the proofs provided except where explicitly noted otherwise.

Continuous time convolution properties

Associativity

The operation of convolution is associative. That is, for all continuous time signals x 1 , x 2 , x 3 the following relationship holds.

x 1 * ( x 2 * x 3 ) = ( x 1 * x 2 ) * x 3

In order to show this, note that

( x 1 * ( x 2 * x 3 ) ) ( t ) = - - x 1 ( τ 1 ) x 2 ( τ 2 ) x 3 ( ( t - τ 1 ) - τ 2 ) d τ 2 d τ 1 = - - x 1 ( τ 1 ) x 2 ( ( τ 1 + τ 2 ) - τ 1 ) x 3 ( t - ( τ 1 + τ 2 ) ) d τ 2 d τ 1 = - - x 1 ( τ 1 ) x 2 ( τ 3 - τ 1 ) x 3 ( t - τ 3 ) d τ 1 d τ 3 = ( ( x 1 * x 2 ) * x 3 ) ( t )

proving the relationship as desired through the substitution τ 3 = τ 1 + τ 2 .

Commutativity

The operation of convolution is commutative. That is, for all continuous time signals x 1 , x 2 the following relationship holds.

x 1 * x 2 = x 2 * x 1

In order to show this, note that

( x 1 * x 2 ) ( t ) = - x 1 ( τ 1 ) x 2 ( t - τ 1 ) d τ 1 = - x 1 ( t - τ 2 ) x 2 ( τ 2 ) d τ 2 = ( x 2 * x 1 ) ( t )

proving the relationship as desired through the substitution τ 2 = t - τ 1 .

Distributivity

The operation of convolution is distributive over the operation of addition. That is, for all continuous time signals x 1 , x 2 , x 3 the following relationship holds.

x 1 * ( x 2 + x 3 ) = x 1 * x 2 + x 1 * x 3

In order to show this, note that

( x 1 * ( x 2 + x 3 ) ) ( t ) = - x 1 ( τ ) ( x 2 ( t - τ ) + x 3 ( t - τ ) ) d τ = - x 1 ( τ ) x 2 ( t - τ ) d τ + - x 1 ( τ ) x 3 ( t - τ ) d τ = ( x 1 * x 2 + x 1 * x 3 ) ( t )

proving the relationship as desired.

Multilinearity

The operation of convolution is linear in each of the two function variables. Additivity in each variable results from distributivity of convolution over addition. Homogenity of order one in each variable results from the fact that for all continuous time signals x 1 , x 2 and scalars a the following relationship holds.

a ( x 1 * x 2 ) = ( a x 1 ) * x 2 = x 1 * ( a x 2 )

In order to show this, note that

( a ( x 1 * x 2 ) ) ( t ) = a - x 1 ( τ ) x 2 ( t - τ ) d τ = - ( a x 1 ( τ ) ) x 2 ( t - τ ) d τ = ( ( a x 1 ) * x 2 ) ( t ) = - x 1 ( τ ) ( a x 2 ( t - τ ) ) d τ = ( x 1 * ( a x 2 ) ) ( t )

proving the relationship as desired.

Conjugation

The operation of convolution has the following property for all continuous time signals x 1 , x 2 .

x 1 * x 2 ¯ = x 1 ¯ * x 2 ¯

In order to show this, note that

( x 1 * x 2 ¯ ) ( t ) = - x 1 ( τ ) x 2 ( t - τ ) d τ ¯ = - x 1 ( τ ) x 2 ( t - τ ) ¯ d τ = - x 1 ¯ ( τ ) x 2 ¯ ( t - τ ) d τ = ( x 1 ¯ * x 2 ¯ ) ( t )

proving the relationship as desired.

Time shift

The operation of convolution has the following property for all continuous time signals x 1 , x 2 where S T is the time shift operator.

S T ( x 1 * x 2 ) = ( S T x 1 ) * x 2 = x 1 * ( S T x 2 )

In order to show this, note that

S T ( x 1 * x 2 ) ( t ) = - x 2 ( τ ) x 1 ( ( t - T ) - τ ) d τ = - x 2 ( τ ) S T x 1 ( t - τ ) d τ = ( ( S T x 1 ) * x 2 ) ( t ) = - x 1 ( τ ) x 2 ( ( t - T ) - τ ) d τ = - x 1 ( τ ) S T x 2 ( t - τ ) d τ = x 1 * ( S T x 2 ) ( t )

proving the relationship as desired.

Differentiation

The operation of convolution has the following property for all continuous time signals x 1 , x 2 .

d d t ( x 1 * x 2 ) ( t ) = d x 1 d t * x 2 ( t ) = x 1 * d x 2 d t ( t )

In order to show this, note that

d d t ( x 1 * x 2 ) ( t ) = - x 2 ( τ ) d d t x 1 ( t - τ ) d τ = d x 1 d t * x 2 ( t ) = - x 1 ( τ ) d d t x 2 ( t - τ ) d τ = x 1 * d x 2 d t ( t )

proving the relationship as desired.

Impulse convolution

The operation of convolution has the following property for all continuous time signals x where δ is the Dirac delta funciton.

x * δ = x

In order to show this, note that

( x * δ ) ( t ) = - x ( τ ) δ ( t - τ ) d τ = x ( t ) - δ ( t - τ ) d τ = x ( t )

proving the relationship as desired.

Width

The operation of convolution has the following property for all continuous time signals x 1 , x 2 where Duration ( x ) gives the duration of a signal x .

Duration ( x 1 * x 2 ) = Duration ( x 1 ) + Duration ( x 2 )

. In order to show this informally, note that ( x 1 * x 2 ) ( t ) is nonzero for all t for which there is a τ such that x 1 ( τ ) x 2 ( t - τ ) is nonzero. When viewing one function as reversed and sliding past the other, it is easy to see that such a τ exists for all t on an interval of length Duration ( x 1 ) + Duration ( x 2 ) . Note that this is not always true of circular convolution of finite length and periodic signals as there is then a maximum possible duration within a period.

Convolution properties summary

As can be seen the operation of continuous time convolution has several important properties that have been listed and proven in this module. With slight modifications to proofs, most of these also extend to continuous time circular convolution as well and the cases in which exceptions occur have been noted above. These identities will be useful to keep in mind as the reader continues to study signals and systems.

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask