<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Determine whether a relation represents a function.
  • Find the value of a function.
  • Determine whether a function is one-to-one.
  • Use the vertical line test to identify functions.
  • Graph the functions listed in the library of functions.

A jetliner changes altitude as its distance from the starting point of a flight increases. The weight of a growing child increases with time. In each case, one quantity depends on another. There is a relationship between the two quantities that we can describe, analyze, and use to make predictions. In this section, we will analyze such relationships.

Determining whether a relation represents a function

A relation    is a set of ordered pairs. The set consisting of the first components of each ordered pair    is called the domain and the set consisting of the second components of each ordered pair is called the range . Consider the following set of ordered pairs. The first numbers in each pair are the first five natural numbers. The second number in each pair is twice that of the first.

{ ( 1 , 2 ) , ( 2 , 4 ) , ( 3 , 6 ) , ( 4 , 8 ) , ( 5 , 10 ) }

The domain is { 1 , 2 , 3 , 4 , 5 } . The range is { 2 , 4 , 6 , 8 , 10 } .

Note that each value in the domain is also known as an input value, or independent variable    , and is often labeled with the lowercase letter x . Each value in the range is also known as an output value, or dependent variable    , and is often labeled lowercase letter y .

A function f is a relation that assigns a single element in the range to each element in the domain . In other words, no x -values are repeated. For our example that relates the first five natural numbers    to numbers double their values, this relation is a function because each element in the domain, { 1 , 2 , 3 , 4 , 5 } , is paired with exactly one element in the range, { 2 , 4 , 6 , 8 , 10 } .

Now let’s consider the set of ordered pairs that relates the terms “even” and “odd” to the first five natural numbers. It would appear as

{ ( odd , 1 ) , ( even , 2 ) , ( odd , 3 ) , ( even , 4 ) , ( odd , 5 ) }

Notice that each element in the domain, { even, odd } is not paired with exactly one element in the range, { 1 , 2 , 3 , 4 , 5 } . For example, the term “odd” corresponds to three values from the domain, { 1 , 3 , 5 } and the term “even” corresponds to two values from the range, { 2 , 4 } . This violates the definition of a function, so this relation is not a function.

[link] compares relations that are functions and not functions.

Three relations that demonstrate what constitute a function.
(a) This relationship is a function because each input is associated with a single output. Note that input q and r both give output n . (b) This relationship is also a function. In this case, each input is associated with a single output. (c) This relationship is not a function because input q is associated with two different outputs.

Function

A function    is a relation in which each possible input value leads to exactly one output value. We say “the output is a function of the input.”

The input    values make up the domain    , and the output    values make up the range    .

Given a relationship between two quantities, determine whether the relationship is a function.

  1. Identify the input values.
  2. Identify the output values.
  3. If each input value leads to only one output value, classify the relationship as a function. If any input value leads to two or more outputs, do not classify the relationship as a function.

Questions & Answers

sebd me some questions about anything ill solve for yall
Manifoldee Reply
how to solve x²=2x+8 factorization?
Kristof Reply
x=2x+8
Manifoldee
×=2x-8 minus both sides by 2x
Manifoldee
so, x-2x=2x+8-2x
Manifoldee
then cancel out 2x and -2x, cuz 2x-2x is obviously zero
Manifoldee
so it would be like this: x-2x=8
Manifoldee
then we all know that beside the variable is a number (1): (1)x-2x=8
Manifoldee
so we will going to minus that 1-2=-1
Manifoldee
so it would be -x=8
Manifoldee
so next step is to cancel out negative number beside x so we get positive x
Manifoldee
so by doing it you need to divide both side by -1 so it would be like this: (-1x/-1)=(8/-1)
Manifoldee
so -1/-1=1
Manifoldee
so x=-8
Manifoldee
SO THE ANSWER IS X=-8
Manifoldee
so we should prove it
Manifoldee
x=2x+8 x-2x=8 -x=8 x=-8 by mantu from India
mantu
lol i just saw its x²
Manifoldee
x²=2x-8 x²-2x=8 -x²=8 x²=-8 square root(x²)=square root(-8) x=sq. root(-8)
Manifoldee
1KI POWER 1/3 PLEASE SOLUTIONS
Prashant Reply
hii
Amit
how are you
Dorbor
well
Biswajit
can u tell me concepts
Gaurav
Find the possible value of 8.5 using moivre's theorem
Reuben Reply
which of these functions is not uniformly cintinuous on (0, 1)? sinx
Pooja Reply
which of these functions is not uniformly continuous on 0,1
Basant Reply
solve this equation by completing the square 3x-4x-7=0
Jamiz Reply
X=7
Muustapha
=7
mantu
x=7
mantu
3x-4x-7=0 -x=7 x=-7
Kr
x=-7
mantu
9x-16x-49=0 -7x=49 -x=7 x=7
mantu
what's the formula
Modress
-x=7
Modress
new member
siame
what is trigonometry
Jean Reply
deals with circles, angles, and triangles. Usually in the form of Soh cah toa or sine, cosine, and tangent
Thomas
solve for me this equational y=2-x
Rubben Reply
what are you solving for
Alex
solve x
Rubben
you would move everything to the other side leaving x by itself. subtract 2 and divide -1.
Nikki
then I got x=-2
Rubben
it will b -y+2=x
Alex
goodness. I'm sorry. I will let Alex take the wheel.
Nikki
ouky thanks braa
Rubben
I think he drive me safe
Rubben
how to get 8 trigonometric function of tanA=0.5, given SinA=5/13? Can you help me?m
Pab Reply
More example of algebra and trigo
Stephen Reply
What is Indices
Yashim Reply
If one side only of a triangle is given is it possible to solve for the unkown two sides?
Felix Reply
cool
Rubben
kya
Khushnama
please I need help in maths
Dayo Reply
Okey tell me, what's your problem is?
Navin
the least possible degree ?
Dejen Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?

Ask