<< Chapter < Page Chapter >> Page >

Determining the work to accelerate a package

Suppose that you push on the 30.0-kg package in [link] with a constant force of 120 N through a distance of 0.800 m, and that the opposing friction force averages 5.00 N.

(a) Calculate the net work done on the package. (b) Solve the same problem as in part (a), this time by finding the work done by each force that contributes to the net force.

Strategy and Concept for (a)

This is a motion in one dimension problem, because the downward force (from the weight of the package) and the normal force have equal magnitude and opposite direction, so that they cancel in calculating the net force, while the applied force, friction, and the displacement are all horizontal. (See [link] .) As expected, the net work is the net force times distance.

Solution for (a)

The net force is the push force minus friction, or F net = 120 N – 5 . 00 N = 115 N size 12{F rSub { size 8{"net"} } " = 120 N – 5" "." "00 N = 115 N"} {} . Thus the net work is

W net = F net d = 115 N 0.800 m = 92.0 N m = 92.0 J. alignl { stack { size 12{W rSub { size 8{"net"} } =F rSub { size 8{"net"} } d= left ("115"`N right ) left (0 "." "800"`m right )} {} #" "="92" "." 0`N cdot m="92" "." 0`J "." {} } } {}

Discussion for (a)

This value is the net work done on the package. The person actually does more work than this, because friction opposes the motion. Friction does negative work and removes some of the energy the person expends and converts it to thermal energy. The net work equals the sum of the work done by each individual force.

Strategy and Concept for (b)

The forces acting on the package are gravity, the normal force, the force of friction, and the applied force. The normal force and force of gravity are each perpendicular to the displacement, and therefore do no work.

Solution for (b)

The applied force does work.

W app = F app d cos = F app d = 120 N 0.800 m = 96.0 J alignl { stack { size 12{W rSub { size 8{"app"} } =F rSub { size 8{"app"} } d"cos" left (0° right )=F rSub { size 8{"app"} } d} {} #" "= left ("120 N" right ) left (0 "." "800"" m" right ) {} # " "=" 96" "." "0 J" "." {}} } {}

The friction force and displacement are in opposite directions, so that θ = 180º size 12{θ="180"°} {} , and the work done by friction is

W fr = F fr d cos 180º = F fr d = 5.00 N 0.800 m = 4.00 J. alignl { stack { size 12{W rSub { size 8{"fr"} } =F rSub { size 8{"fr"} } d"cos" left ("180"° right )= - F rSub { size 8{"fr"} } d} {} #" "= - left (5 "." "00 N" right ) left (0 "." "800"" m" right ) {} # ital " "= - 4 "." "00" J "." {}} } {}

So the amounts of work done by gravity, by the normal force, by the applied force, and by friction are, respectively,

W gr = 0, W N = 0, W app = 96.0 J, W fr = 4.00 J. alignl { stack { size 12{W rSub { size 8{"gr"} } =0,} {} #W rSub { size 8{N} } =0, {} # W rSub { size 8{"app"} } ="96" "." 0" J," {} #W rSub { size 8{"fr"} } = - 4 "." "00"" J" "." {} } } {}

The total work done as the sum of the work done by each force is then seen to be

W total = W gr + W N + W app + W fr = 92 .0 J . size 12{W rSub { size 8{"total"} } =W rSub { size 8{"gr"} } +W rSub { size 8{N} } +W rSub { size 8{"app"} } +W rSub { size 8{"fr"} } ="92" "." 0" J"} {}

Discussion for (b)

The calculated total work W total size 12{W rSub { size 8{"total"} } } {} as the sum of the work by each force agrees, as expected, with the work W net size 12{W rSub { size 8{"net"} } } {} done by the net force. The work done by a collection of forces acting on an object can be calculated by either approach.

Determining speed from work and energy

Find the speed of the package in [link] at the end of the push, using work and energy concepts.

Strategy

Here the work-energy theorem can be used, because we have just calculated the net work, W net size 12{W rSub { size 8{"net"} } } {} , and the initial kinetic energy, 1 2 m v 0 2 size 12{ { {1} over {2} } ital "mv" rSub { size 8{0} rSup { size 8{2} } } } {} . These calculations allow us to find the final kinetic energy, 1 2 mv 2 size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } } {} , and thus the final speed v size 12{v} {} .

Solution

The work-energy theorem in equation form is

W net = 1 2 mv 2 1 2 m v 0 2 . size 12{W rSub { size 8{"net"} } = { {1} over {2} } ital "mv" rSup { size 8{2} } - { {1} over {2} } ital "mv" rSub { size 8{0} rSup { size 8{2} } } "." } {}

Solving for 1 2 mv 2 size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } } {} gives

1 2 mv 2 = W net + 1 2 m v 0 2 . size 12{ { {1} over {2} } ital "mv""" lSup { size 8{2} } =w rSub { size 8{ ital "net"} } + { {1} over {2} } ital "mv""" lSub { size 8{0} } "" lSup { size 8{2} } "." } {}

Thus,

1 2 mv 2 = 92 . 0 J + 3 . 75 J = 95. 75 J. size 12{ { {1} over {2} } ital "mv" rSup { size 8{2} } ="92" "." 0`J+3 "." "75"`J="95" "." "75"`J} {}

Solving for the final speed as requested and entering known values gives

v = 2 (95.75 J) m = 191.5 kg m 2 /s 2 30.0 kg = 2.53 m/s.

Discussion

Using work and energy, we not only arrive at an answer, we see that the final kinetic energy is the sum of the initial kinetic energy and the net work done on the package. This means that the work indeed adds to the energy of the package.

Got questions? Get instant answers now!

Questions & Answers

How do you convert 0.0045kgcm³ to the si unit?
EDYKING Reply
how many state of matter do we really have like I mean... is there any newly discovered state of matter?
Falana Reply
I only know 5: •Solids •Liquids •Gases •Plasma •Bose-Einstein condensate
Thapelo
Alright Thank you
Falana
Which one is the Bose-Einstein
James
can you explain what plasma and the I her one you mentioned
Olatunde
u can say sun or stars are just the state of plasma
Mohit
but the are more than seven
Issa
what the meaning of continuum
Akhigbe Reply
What state of matter is fire
Thapelo Reply
fire is not in any state of matter...fire is rather a form of energy produced from an oxidising reaction.
Xenda
Isn`t fire the plasma state of matter?
Walter
How can you define time?
Thapelo Reply
Time can be defined as a continuous , dynamic , irreversible , unpredictable quantity .
Tanaya
what is the relativity of physics
Paul Reply
How do you convert 0.0045kgcm³ to the si unit?
flint
What is the formula for motion
Anthony Reply
V=u+at V²=u²-2as
flint
S=ut+½at
flint
they are eqns of linear motion
King
S=Vt
Thapelo
v=u+at s=ut+at^\2 v^=u^+2as where ^=2
King
hi
Mehadi
hello
King
Explain dopplers effect
Jennifer Reply
Not yet learnt
Bob
Explain motion with types
Bob
Acceleration is the change in velocity over time. Given this information, is acceleration a vector or a scalar quantity? Explain.
Alabi Reply
Scalar quantity Because acceleration has only magnitude
Bob
acleration is vectr quatity it is found in a spefied direction and it is product of displcemnt
bhat
its a scalar quantity
Paul
velocity is speed and direction. since velocity is a part of acceleration that makes acceleration a vector quantity. an example of this is centripetal acceleration. when you're moving in a circular patter at a constant speed, you are still accelerating because your direction is constantly changing.
Josh
acceleration is a vector quantity. As explained by Josh Thompson, even in circular motion, bodies undergoing circular motion only accelerate because on the constantly changing direction of their constant speed. also retardation and acceleration are differentiated by virtue of their direction in
fitzgerald
respect to prevailing force
fitzgerald
What is the difference between impulse and momentum?
Manyo
Momentum is the product of the mass of a body and the change in velocity of its motion. ie P=m(v-u)/t (SI unit is kgm/s). it is literally the impact of collision from a moving body. While Impulse is the product of momentum and time. I = Pt (SI unit is kgm) or it is literally the change in momentum
fitzgerald
Or I = m(v-u)
fitzgerald
Calculation of kinetic and potential energy
dion Reply
K.e=mv² P.e=mgh
Malia
K is actually 1/2 mv^2
Josh
what impulse is given to an a-particle of mass 6.7*10^-27 kg if it is ejected from a stationary nucleus at a speed of 3.2*10^-6ms²? what average force is needed if it is ejected in approximately 10^-8 s?
John
speed=velocity÷time velocity=speed×time=3.2×10^-6×10^-8=32×10^-14m/s impulse [I]=∆momentum[P]=mass×velocity=6.7×10^-27×32×10^-14=214.4×10^-41kg/ms force=impulse÷time=214.4×10^-41÷10^-8=214.4×10^-33N. dats how I solved it.if wrong pls correct me.
Melody
what is sound wave
Nworu Reply
sound wave is a mechanical longitudinal wave that transfers energy from one point to another
Ogor
its a longitudnal wave which is associted wth compresion nad rearfractions
bhat
what is power
PROMISE Reply
it's also a capability to do something or act in a particular way.
Kayode
Newton laws of motion
Mike
power also known as the rate of ability to do work
Slim
power means capabilty to do work p=w/t its unit is watt or j/s it also represents how much work is done fr evry second
bhat
what does fluorine do?
Cheyanne Reply
strengthen and whiten teeth.
Gia
a simple pendulum make 50 oscillation in 1minute, what is it period of oscillation?
Nansing Reply
length of pendulm?
bhat
what is the difference between temperature and heat transfer?
Bonga Reply
temperature is the measurement of hotness or coldness of a body... heat transfer is the movement of heat from one body to another
Doc
U get it right
Titilayo
correct
PROMISE
heat is an energy possesed by any substance due to random kinetic energy possesed by molecules while temperature is driving force which gives direction of flow heat
bhat
Practice Key Terms 3

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask