# 5.3 Design of linear-phase fir filters by general interpolation

 Page 1 / 1
(Blank Abstract)

## Design of fir filters by general interpolation

If the desired interpolation points are not uniformly spaced between $0$ and $\pi$ then we can not use the DFT. We must take a different approach. Recall that for a Type I FIRfilter, $A()=h(M)+2\sum_{n=0}^{M-1} h(n)\cos ((M-n))$ For convenience, it is common to write this as $A()=\sum_{n=0}^{M} a(n)\cos (n)$ where $h(M)=a(0)$ and $\forall n, 1\le n\le N-1\colon h(n)=\frac{a(M-n)}{2}$ . Note that there are $M+1$ parameters. Suppose it is desired that $A()$ interpolates a set of specified values: $\forall k, 0\le k\le M\colon A({}_{k})={A}_{k}$ To obtain a Type I FIR filter satisfying these interpolation equations, one can set up a linear system of equations. $\forall k, 0\le k\le M\colon \sum_{n=0}^{M} a(n)\cos (n{}_{k})={A}_{k}$ In matrix form, we have $\begin{pmatrix}1 & \cos {}_{0} & \cos (2{}_{0}) & & \cos (M{}_{0})\\ 1 & \cos {}_{1} & \cos (2{}_{1}) & & \cos (M{}_{1})\\ \\ 1 & \cos {}_{M} & \cos (2{}_{M}) & & \cos (M{}_{M})\\ \end{pmatrix}\left(\begin{array}{c}a(0)\\ a(1)\\ \\ a(M)\end{array}\right)=\left(\begin{array}{c}A(0)\\ A(1)\\ \\ A(M)\end{array}\right)$ Once $a(n)$ is found, the filter $h(n)$ is formed as $\{h(n)\}=1/2\{a(M), a(M-1), , a(1), 2a(0), a(1), , a(M-1), a(M)\}$

## Example

In the following example, we design a length 19 Type I FIR. Then $M=9$ and we have 10 parameters. We can therefore have 10 interpolation equations. We choose:

$\forall k, {}_{k}=\{0, 0.1\pi , 0.2\pi , 0.3\pi \}0\le k\le 3\colon A({}_{k})=1$
$\forall k, {}_{k}=\{0.5\pi , 0.6\pi , 0.7\pi , 0.8\pi , 0.8\pi , 1.0\pi \}4\le k\le 9\colon A({}_{k})=0$
To solve this interpolation problem in Matlab, note that the matrix can be generated by a single multiplication of a columnvector and a row vector. This is done with the command C = cos(wk*[0:M]); where wk is a column vector containing the frequency points. To solve the linear system ofequations, we can use the Matlab backslash command.

N = 19; M = (N-1)/2;wk = [0 .1 .2 .3 .5 .6 .7 .8 .9 1]'*pi;Ak = [1 1 1 1 0 0 0 0 0 0]';C = cos(wk*[0:M]);a = C/Ak; h = (1/2)*[a([M:-1:1]+1); 2*a([0]+1); a(1:M]+1)];[A,w] = firamp(h,1);plot(w/pi,A,wk/pi,Ak,'o') title('A(\omega)')xlabel('\omega/\pi')

The general interpolation problem is much more flexible than the uniform interpolation problem that the DFT solves. Forexample, by leaving a gap between the pass-band and stop-band as in this example, the ripple near the band edge is reduced(but the transition between the pass- and stop-bands is not as sharp). The general interpolation problem also arises as asubproblem in the design of optimal minimax (or Chebyshev) FIR filters.

## Linear-phase fir filters: pros and cons

FIR digital filters have several desirable properties.

• They can have exactly linear phase.
• They can not be unstable.
• There are several very effective methods for designing linear-phase FIR digital filters.
On the other hand,
• Linear-phase filters can have long delay between input and output.
• If the phase need not be linear, then IIR filters can be more efficient.

how can chip be made from sand
are nano particles real
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
no can't
Lohitha
where we get a research paper on Nano chemistry....?
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
in a comparison of the stages of meiosis to the stage of mitosis, which stages are unique to meiosis and which stages have the same event in botg meiosis and mitosis
Got questions? Join the online conversation and get instant answers!