<< Chapter < Page Chapter >> Page >

The new nonlinear method is entirely different. The spectra can overlap as much as they want. The idea is to have the amplitude, rather than thelocation of the spectra be as different as possible. This allows clipping, thresholding, and shrinking of the amplitude of the transform toseparate signals or remove noise. It is the localizing or concentrating properties of the wavelet transform that makes it particularly effectivewhen used with these nonlinear methods. Usually the same properties that make a system good for denoising or separation by nonlinear methods, makesit good for compression, which is also a nonlinear process.

Denoising by thresholding

We develop the basic ideas of thresholding the wavelet transform using Donoho's formulations [link] , [link] , [link] . Assume a finite length signal with additive noise of the form

y i = x i + ϵ n i , i = 1 , ... , N

as a finite length signal of observations of the signal x i that is corrupted by i.i.d.  zero mean, white Gaussian noise n i with standard deviation ϵ , i.e., n i i i d N ( 0 , 1 ) . The goal is to recover the signal x from the noisy observations y . Here and in the following, v denotes a vector with the ordered elements v i if the index i is omitted. Let W be a left invertible wavelet transformation matrix of the discrete wavelet transform(DWT). Then Eq. [link] can be written in the transformation domain

Y = X + N , or , Y i = X i + N i ,

where capital letters denote variables in the transform domain, i.e., Y = W y . Then the inverse transform matrix W - 1 exists, and we have

W - 1 W = I .

The following presentation follows Donoho's approach [link] , [link] , [link] , [link] , [link] that assumes an orthogonal wavelet transform with a square W ; i.e., W - 1 = W T . We will use the same assumption throughout this section.

Let X ^ denote an estimate of X , based on the observations Y . We consider diagonal linear projections

Δ = diag ( δ 1 , ... , δ N ) , δ i { 0 , 1 } , i = 1 , ... , N ,

which give rise to the estimate

x ^ = W - 1 X ^ = W - 1 Δ Y = W - 1 Δ W y .

The estimate X ^ is obtained by simply keeping or zeroing the individual wavelet coefficients. Since we are interested inthe l 2 error we define the risk measure

R ( X ^ , X ) = E x ^ - x 2 2 = E W - 1 ( X ^ - X ) 2 2 = E X ^ - X 2 2 .

Notice that the last equality in Eq. [link] is a consequence of the orthogonality of W . The optimal coefficients in the diagonal projection scheme are δ i = 1 X i > ϵ ; It is interesting to note that allowing arbitrary δ i I R improves the ideal risk by at most a factor of 2 [link] i.e., only those values of Y where the corresponding elements of X are larger than ϵ are kept, all others are set to zero. This leads to the ideal risk

R i d ( X ^ , X ) = n = 1 N min ( X 2 , ϵ 2 ) .

The ideal risk cannot be attained in practice, since it requires knowledge of X , the wavelet transform of the unknown vector x . However, it does give us a lower limit for the l 2 error.

Donoho proposes the following scheme for denoising:

  1. compute the DWT Y = W y
  2. perform thresholding in the wavelet domain, according to so-called hard thresholding
    X ^ = T h ( Y , t ) = Y , | Y | t 0 , | Y | < t
    or according to so-called soft thresholding
    X ^ = T S ( Y , t ) = sgn ( Y ) ( | Y | - t ) , | Y | t 0 , | Y | < t
  3. compute the inverse DWT x ^ = W - 1 X ^

This simple scheme has several interesting properties. It's risk is within a logarithmic factor ( log N ) of the ideal risk for both thresholding schemes and properly chosen thresholds t ( N , ϵ ) . If one employs soft thresholding, then the estimate is with high probability at least assmooth as the original function. The proof of this proposition relies on the fact that wavelets are unconditional bases for a variety of smoothnessclasses and that soft thresholding guarantees (with high probability) that the shrinkage condition | X ^ i | < | X i | holds. The shrinkage condition guarantees that x ^ is in the same smoothness class as is x . Moreover, the soft threshold estimate is the optimal estimate that satisfies the shrinkage condition. The smoothness property guarantees anestimate free from spurious oscillations which may result from hard thresholding or Fourier methods. Also, it can be shown that it is notpossible to come closer to the ideal risk than within a factor log N . Not only does Donoho's method have nice theoretical properties, but italso works very well in practice.

Questions & Answers

where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
yes that's correct
I think
Nasa has use it in the 60's, copper as water purification in the moon travel.
nanocopper obvius
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
scanning tunneling microscope
how nano science is used for hydrophobicity
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
what is differents between GO and RGO?
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
analytical skills graphene is prepared to kill any type viruses .
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play

Source:  OpenStax, Wavelets and wavelet transforms. OpenStax CNX. Aug 06, 2015 Download for free at https://legacy.cnx.org/content/col11454/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wavelets and wavelet transforms' conversation and receive update notifications?