<< Chapter < Page Chapter >> Page >
Elementary Algebra: An introduction to solving linear equations in one variable.

Module overview

Learning how to solve various algebraic equations is one of our main goals in algebra. This module introduces the basic techniques for solving linear equations in one variable. (Prerequisites: Working knowledge of real numbers and their operations.)

    Objectives

  • Define Linear Equations in One Variable
  • Solutions to Linear Equations
  • Solving Linear Equations
  • Combining Like Terms and Simplifying
  • Literal Equations

Define linear equations in one variable

We begin by establishing some definitions.

Equation
An equation is a statement indicating that two algebraic expressions are equal.
Linear Equation in One Variable
A linear equation in one variable x size 12{x} {} is an equation that can be written in the form ax + b = 0 size 12{ ital "ax"+b=0} {} where a size 12{a} {} and b size 12{b} {} are real numbers and a 0 size 12{a<>0} {} .

Following are some examples of linear equations in one variable, all of which will be solved in the course of this module.

x + 3 = 5
x 3 + 1 2 = 2 3
5 ( 3 x + 2 ) 2 = 2 ( 1 7 x )

Solutions to linear equations in one variable

The variable in the linear equation 2x + 3 = 13 size 12{2x+3="13"} {} is x size 12{x} {} . Values that can replace the variable to make a true statement compose the solution set. Linear equations have at most one solution. After some thought, you might deduce that x = 5 size 12{x=5} {} is a solution to 2x + 3 = 13 size 12{2x+3="13"} {} . To verify this we substitute the value 5 in for x size 12{x} {} and see that we get a true statement, 2 5 + 3 = 10 + 3 = 13 size 12{2 left (5 right )+3="10"+3="13"} {} .

Is x = 3 size 12{x=3} {} a solution to 2x 3 = 9 size 12{ - 2x - 3= - 9} {} ?

Yes, because 2 3 3 = 6 3 = 9 size 12{ - 2 left (3 right ) - 3= - 6 - 3= - 9} {}

Is a = 1 2 size 12{a= - { { size 8{1} } over { size 8{2} } } } {} a solution to 10 a + 5 = 25 size 12{ - "10"a+5="25"} {} ?

No, because 10 1 2 + 5 = 5 + 5 = 10 25 size 12{ - "10" left ( - { { size 8{1} } over { size 8{2} } } right )+5=5+5="10"<>"25"} {}

When evaluating expressions, it is a good practice to replace all variables with parenthesis first, then substitute in the appropriate values. By making use of parenthesis we could avoid some common errors using the order of operations.

Is y = 3 size 12{y= - 3} {}   a solution to 2y 5 = y 14 size 12{2y - 5= - y - "14"} {} ? 2 (    ) 5 = (    ) 14 Replace variables with parenthesis . 2 ( 3 ) 5 = ( 3 ) 14 Substitute the appropriate value . 6 5 = 3 14 Simplify . 11 = 11 True . Yes because y = 3 produces a true mathematical statement.

Solving linear equations in one variable

When the coefficients of linear equations are numbers other than nice easy integers, guessing at solutions becomes an unreasonable prospect. We begin to develop an algebraic technique for solving by first looking at the properties of equality.

Properties of equality

Given algebraic expressions A and B where c is a real number:

Addition property of equality

If  A = B  then  A + c = B + c

Subtraction property of equality

If  A = B  then  A - c = B - c

Multiplication property of equality

If  A = B  and  c 0  then c A = c B

Division property of equality

If  A = B  and  c 0  then  A c = B c

Multiplying or dividing both sides of an equation by zero is carefully avoided. Dividing by zero is undefined and multiplying both sides by zero will result in an equation 0=0.

To summarize, the equality is retained if we add, subtract, multiply and divide both sides of an equation by any nonzero real number. The central technique for solving linear equations involves applying these properties in order to isolate the variable on one side of the equation.

Use the properties of equality to solve: x + 3 = 5 x + 3 = 5 x + 3 3 = 5 3 Subtract 3 on both sides . x = 8 Simplify The solution set is { 8 } .

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Contemporary math applications. OpenStax CNX. Dec 15, 2014 Download for free at http://legacy.cnx.org/content/col11559/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Contemporary math applications' conversation and receive update notifications?

Ask