<< Chapter < Page Chapter >> Page >
Details the Continuous-Time Fourier Transform.

Introduction

In this module, we will derive an expansion for any arbitrary continuous-time function, and in doing so, derive the Continuous Time Fourier Transform (CTFT).

Since complex exponentials are eigenfunctions of linear time-invariant (LTI) systems , calculating the output of an LTI system given s t as an input amounts to simple multiplication, where H s is the eigenvalue corresponding to s. As shown in the figure, a simple exponential input would yield the output

y t H s s t

Using this and the fact that is linear, calculating y t for combinations of complex exponentials is also straightforward.

c 1 s 1 t c 2 s 2 t c 1 H s 1 s 1 t c 2 H s 2 s 2 t n c n s n t n c n H s n s n t

The action of H on an input such as those in the two equations above is easy to explain. independently scales each exponential component s n t by a different complex number H s n . As such, if we can write a function f t as a combination of complex exponentials it allows us to easily calculate the output of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals in terms of a set of simpler functions bysuperposition of a number of complex exponentials. Below we will present the Continuous-Time Fourier Transform (CTFT), commonly referred to as just the Fourier Transform (FT). Because theCTFT deals with nonperiodic signals, we must find a way to include all real frequencies in thegeneral equations.For the CTFT we simply utilize integration over real numbers rather than summation over integers in order to express the aperiodic signals.

Fourier transform synthesis

Joseph Fourier demonstrated that an arbitrary s t can be written as a linear combination of harmonic complex sinusoids

s t n c n j ω 0 n t
where ω 0 2 T is the fundamental frequency. For almost all s t of practical interest, there exists c n to make [link] true. If s t is finite energy ( s t L 0 T 2 ), then the equality in [link] holds in the sense of energy convergence; if s t is continuous, then [link] holds pointwise. Also, if s t meets some mild conditions (the Dirichlet conditions), then [link] holds pointwise everywhere except at points of discontinuity.

The c n - called the Fourier coefficients - tell us "how much" of the sinusoid j ω 0 n t is in s t . The formula shows s t as a sum of complex exponentials, each of which is easily processed by an LTI system (since it is an eigenfunction of every LTI system). Mathematically, it tells us that the set ofcomplex exponentials n n j ω 0 n t form a basis for the space of T-periodic continuous time functions.

Equations

Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve deeper into the use of the superposition principle. Let s T ( t ) be a periodic signal having period T . We want to consider what happens to this signal's spectrum as the period goes to infinity. We denote the spectrum for any assumed value of the period by c n ( T ) . We calculate the spectrum according to the Fourier formula for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on Fourier Series .)

c n = 1 T 0 T s ( t ) exp ( - ı ω 0 t ) d t
where ω 0 = T and where we have used a symmetric placement of the integration interval about the origin for subsequent derivational convenience. We vary the frequency index n proportionally as we increase the period. Define making the corresponding Fourier Series
s T ( t ) = - f ( t ) exp ( ı ω 0 t ) 1 T )
As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,
lim T s T ( t ) s ( t ) = - S ( f ) exp ( ı ω 0 t ) d f
with
S ( f ) = - s ( t ) exp ( - ı ω 0 t ) d t

Continuous-time fourier transform

Ω t f t Ω t

Inverse ctft

f t 1 2 Ω Ω Ω t

It is not uncommon to see the above formula written slightly different. One of themost common differences is the way that the exponential is written. The above equations use the radialfrequency variable Ω in the exponential, where Ω 2 f , but it is also common to include the more explicit expression, 2 f t , in the exponential. Click here for an overview of the notation used in Connexion's DSP modules.

We know from Euler's formula that cos ( ω t ) + sin ( ω t ) = 1 - j 2 e j ω t + 1 + j 2 e - j ω t .

Got questions? Get instant answers now!

Ctft definition demonstration

CTFTDemo
Interact (when online) with a Mathematica CDF demonstrating Continuous Time Fourier Transform. To Download, right-click and save as .cdf.

Example problems

Find the Fourier Transform (CTFT) of the function

f t α t t 0 0

In order to calculate the Fourier transform, all we need to use is [link] , complex exponentials , and basic calculus.

Ω t f t Ω t t 0 α t Ω t t 0 t α Ω 0 -1 α Ω
Ω 1 α Ω

Got questions? Get instant answers now!

Find the inverse Fourier transform of the ideal lowpass filter defined by

X Ω 1 Ω M 0

Here we will use [link] to find the inverse FT given that t 0 .

x t 1 2 Ω M M Ω t Ω w 1 2 Ω t 1 t M t
x t M sinc M t

Got questions? Get instant answers now!

Fourier transform summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using a set of complex exponentials as a basis. The continuous time Fourier series synthesis formula expresses a continuous time, periodic function as the sum of continuous time, discrete frequency complex exponentials.

f t n c n j ω 0 n t
The continuous time Fourier series analysis formula gives the coefficients of the Fourier series expansion.
c n 1 T t T 0 f t j ω 0 n t
In both of these equations ω 0 2 T is the fundamental frequency.

Questions & Answers

how do I set up the problem?
Harshika Reply
what is a solution set?
Harshika
find the subring of gaussian integers?
Rofiqul
hello, I am happy to help!
Shirley Reply
please can go further on polynomials quadratic
Abdullahi
I need quadratic equation link to Alpa Beta
Abdullahi Reply
find the value of 2x=32
Felix Reply
divide by 2 on each side of the equal sign to solve for x
corri
X=16
Michael
Want to review on complex number 1.What are complex number 2.How to solve complex number problems.
Beyan
use the y -intercept and slope to sketch the graph of the equation y=6x
Only Reply
how do we prove the quadratic formular
Seidu Reply
hello, if you have a question about Algebra 2. I may be able to help. I am an Algebra 2 Teacher
Shirley Reply
thank you help me with how to prove the quadratic equation
Seidu
may God blessed u for that. Please I want u to help me in sets.
Opoku
what is math number
Tric Reply
4
Trista
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
Need help solving this problem (2/7)^-2
Simone Reply
x+2y-z=7
Sidiki
what is the coefficient of -4×
Mehri Reply
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
Kala Reply
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
Moses Reply
A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place.
Kimberly Reply
Jeannette has $5 and $10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
August Reply
What is the expressiin for seven less than four times the number of nickels
Leonardo Reply
How do i figure this problem out.
how do you translate this in Algebraic Expressions
linda Reply
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask