<< Chapter < Page Chapter >> Page >

These definitions will allow a powerful class of analysis and design methods to be developed and we start with convolution.

Convolution

The most basic and powerful operation for linear discrete-time system analysis, control, and design is discrete-time convolution. We firstdefine the discrete-time unit impulse, also known as the Kronecker delta function, as

δ ( n ) = 1 for n = 0 0 otherwise.

If a system is linear and time-invariant, and δ ( n ) h ( n ) , the output y ( n ) can be calculated from its input x ( n ) by the operation called convolution denoted and defined by

y ( n ) = h ( n ) * x ( n ) = m = - h ( n - m ) x ( m )

It is informative to methodically develop this equation from the basic properties of a linear system.

Derivation of the convolution sum

We first define a complete set of orthogonal basis functions by δ ( n - m ) for m = 0 , 1 , 2 , , . The input x ( n ) is broken down into a set of inputs by taking an inner product of the inputwith each of the basis functions. This produces a set of input components, each of which is a single impulse weighted by a single valueof the input sequence ( x ( n ) , δ ( n - m ) ) = x ( m ) δ ( n - m ) . Using the time invariant property of the system, δ ( n - m ) h ( n - m ) and using the scaling property of a linear system, this gives an output of x ( m ) δ ( n - M ) x ( m ) h ( n - m ) . We now calculate the output due to x ( n ) by adding outputs due to each of the resolved inputs using the superposition property of linear systems. This is illustratedby the following diagram:

x ( n ) = x ( n ) δ ( n ) = x ( 0 ) δ ( n ) x ( 0 ) h ( n ) x ( n ) δ ( n - 1 ) = x ( 1 ) δ ( n - 1 ) x ( 1 ) h ( n - 1 ) x ( n ) δ ( n - 2 ) = x ( 2 ) δ ( n - 2 ) x ( 2 ) h ( n - 2 ) x ( n ) δ ( n - m ) = x ( m ) δ ( n - m ) x ( m ) h ( n - m ) = y ( n )

or

y ( n ) = m = - x ( m ) h ( n - m )

and changing variables gives

y ( n ) = m = - h ( n - m ) x ( m )

If the system is linear but time varying, we denote the response to an impulse at n = m by δ ( n - m ) h ( n , m ) . In other words, each impulse response may be different depending on when theimpulse is applied. From the development above, it is easy to see where the time-invariant property was used and to derive aconvolution equation for a time-varying system as

y ( n ) = h ( n , m ) * x ( n ) = m = - h ( n , m ) x ( m ) .

Unfortunately, relaxing the linear constraint destroys the basic structure of the convolution sum and does not result in anything of this form thatis useful.

By a change of variables, one can easily show that the convolution sum can also be written

y ( n ) = h ( n ) * x ( n ) = m = - h ( m ) x ( n - m ) .

If the system is causal, h ( n ) = 0 for n < 0 and the upper limit on the summation in Equation 2 from Discrete Time Signals becomes m = n . If the input signal is causal, the lower limit on the summation becomes zero. The form of the convolutionsum for a linear, time-invariant, causal discrete-time system with a causal input is

y ( n ) = h ( n ) * x ( n ) = m = 0 n h ( n - m ) x ( m )

or, showing the operations commute

y ( n ) = h ( n ) * x ( n ) = m = 0 n h ( m ) x ( n - m ) .

Convolution is used analytically to analyze linear systems and it can also be used to calculate the output of a system by only knowing its impulseresponse. This is a very powerful tool because it does not require any detailed knowledge of the system itself. It only uses one experimentallyobtainable response. However, this summation cannot only be used to analyze or calculate the response of a given system, it can be an implementation of the system. This summation can be implemented inhardware or programmed on a computer and become the signal processor.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Brief notes on signals and systems. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col10565/1.7
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Brief notes on signals and systems' conversation and receive update notifications?

Ask