<< Chapter < Page Chapter >> Page >
Describes continuous time systems.

Introduction

As you already now know, a continuous time system operates on a continuous time signal input and produces a continuous time signal output. There are numerous examples of useful continuous time systems in signal processing as they essentially describe the world around us. The class of continuous time systems that are both linear and time invariant, known as continuous time LTI systems, is of particular interest as the properties of linearity and time invariance together allow the use of some of the most important and powerful tools in signal processing.

Continuous time systems

Linearity and time invariance

A system H is said to be linear if it satisfies two important conditions. The first, additivity, states for every pair of signals x , y that H ( x + y ) = H ( x ) + H ( y ) . The second, homogeneity of degree one, states for every signal x and scalar a we have H ( a x ) = a H ( x ) . It is clear that these conditions can be combined together into a single condition for linearity. Thus, a system is said to be linear if for every signals x , y and scalars a , b we have that

H ( a x + b y ) = a H ( x ) + b H ( y ) .

Linearity is a particularly important property of systems as it allows us to leverage the powerful tools of linear algebra, such as bases, eigenvectors, and eigenvalues, in their study.

A system H is said to be time invariant if a time shift of an input produces the corresponding shifted output. In other, more precise words, the system H commutes with the time shift operator S T for every T R . That is,

S T H = H S T .

Time invariance is desirable because it eases computation while mirroring our intuition that, all else equal, physical systems should react the same to identical inputs at different times.

When a system exhibits both of these important properties it allows for a more straigtforward analysis than would otherwise be possible. As will be explained and proven in subsequent modules, computation of the system output for a given input becomes a simple matter of convolving the input with the system's impulse response signal. Also proven later, the fact that complex exponential are eigenvectors of linear time invariant systems will enable the use of frequency domain tools such as the various Fouier transforms and associated transfer functions, to describe the behavior of linear time invariant systems.

Consider the system H in which

H ( f ( t ) ) = 2 f ( t )

for all signals f . Given any two signals f , g and scalars a , b

H ( a f ( t ) + b g ( t ) ) ) = 2 ( a f ( t ) + b g ( t ) ) = a 2 f ( t ) + b 2 g ( t ) = a H ( f ( t ) ) + b H ( g ( t ) )

for all real t . Thus, H is a linear system. For all real T and signals f ,

S T ( H ( f ( t ) ) ) = S T ( 2 f ( t ) ) = 2 f ( t - T ) = H ( f ( t - T ) ) = H ( S T ( f ( t ) ) )

for all real t . Thus, H is a time invariant system. Therefore, H is a linear time invariant system.

Got questions? Get instant answers now!

Differential equation representation

It is often useful to to describe systems using equations involving the rate of change in some quantity. For continuous time systems, such equations are called differential equations. One important class of differential equations is the set of linear constant coefficient ordinary differential equations, which are described in more detail in subsequent modules.

Consider the series RLC circuit shown in [link] . This system can be modeled using differential equations. We can use the voltage equations for each circuit element and Kirchoff's voltage law to write a second order linear constant coefficient differential equation describing the charge on the capacitor.

The voltage across the battery is simply V . The voltage across the capacitor is 1 C q . The voltage across the resistor is R d q d t . Finally, the voltage across the inductor is L d 2 q d t 2 . Therefore, by Kirchoff's voltage law, it follows that

L d 2 q d t 2 + R d q d t + 1 C q = V .
A series RLC circuit.
Got questions? Get instant answers now!

Continuous time systems summary

Many useful continuous time systems will be encountered in a study of signals and systems. This course is most interested in those that demonstrate both the linearity property and the time invariance property, which together enable the use of some of the most powerful tools of signal processing. It is often useful to describe them in terms of rates of change through linear constant coefficient ordinary differential equations.

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?

Ask