# 0.2 6.3 impulse  (Page 2/4)

 Page 2 / 4

Solution for (a)

The first ball bounces directly into the wall and exerts a force on it in the $+x$ direction. Therefore the wall exerts a force on the ball in the $-x$ direction. The second ball continues with the same momentum component in the $y$ direction, but reverses its $x$ -component of momentum, as seen by sketching a diagram of the angles involved and keeping in mind the proportionality between velocity and momentum.

These changes mean the change in momentum for both balls is in the $-x$ direction, so the force of the wall on each ball is along the $-x$ direction.

Strategy for (b)

Calculate the change in momentum for each ball, which is equal to the impulse imparted to the ball.

Solution for (b)

Let $u$ be the speed of each ball before and after collision with the wall, and $m$ the mass of each ball. Choose the $x$ -axis and $y$ -axis as previously described, and consider the change in momentum of the first ball which strikes perpendicular to the wall.

${p}_{\text{xi}}=\text{mu}\text{;}\phantom{\rule{0.25em}{0ex}}{p}_{\text{yi}}=0$
${p}_{\text{xf}}=-\text{mu}\text{;}\phantom{\rule{0.25em}{0ex}}{p}_{\text{yf}}=0$

Impulse is the change in momentum vector. Therefore the $x$ -component of impulse is equal to $-2\text{mu}$ and the $y$ -component of impulse is equal to zero.

Now consider the change in momentum of the second ball.

${p}_{\text{xi}}=\text{mu}\phantom{\rule{0.25em}{0ex}}\text{cos 30º}\text{;}\phantom{\rule{0.25em}{0ex}}{p}_{\text{yi}}=\text{–mu}\phantom{\rule{0.25em}{0ex}}\text{sin 30º}$
${p}_{\text{xf}}=–\text{mu}\phantom{\rule{0.25em}{0ex}}\text{cos 30º}\text{;}\phantom{\rule{0.25em}{0ex}}{p}_{\text{yf}}=-\text{mu}\phantom{\rule{0.25em}{0ex}}\text{sin 30º}$

It should be noted here that while ${p}_{x}$ changes sign after the collision, ${p}_{y}$ does not. Therefore the $x$ -component of impulse is equal to $-2\text{mu}\phantom{\rule{0.25em}{0ex}}\text{cos 30º}$ and the $y$ -component of impulse is equal to zero.

The ratio of the magnitudes of the impulse imparted to the balls is

$\frac{2\text{mu}}{2\text{mu}\phantom{\rule{0.25em}{0ex}}\text{cos 30º}}=\frac{2}{\sqrt{3}}=1\text{.}\text{155}.$

Discussion

The direction of impulse and force is the same as in the case of (a); it is normal to the wall and along the negative $x$ - direction. Making use of Newton’s third law, the force on the wall due to each ball is normal to the wall along the positive $x$ -direction.

Our definition of impulse includes an assumption that the force is constant over the time interval $\Delta t$ . Forces are usually not constant . Forces vary considerably even during the brief time intervals considered. It is, however, possible to find an average effective force ${F}_{\text{eff}}$ that produces the same result as the corresponding time-varying force. [link] shows a graph of what an actual force looks like as a function of time for a ball bouncing off the floor. The area under the curve has units of momentum and is equal to the impulse or change in momentum between times ${t}_{1}$ and ${t}_{2}$ . That area is equal to the area inside the rectangle bounded by ${F}_{\text{eff}}$ , ${t}_{1}$ , and ${t}_{2}$ . Thus the impulses and their effects are the same for both the actual and effective forces.

## Making connections: constant force and constant acceleration

The assumption of a constant force in the definition of impulse is analogous to the assumption of a constant acceleration in kinematics. In both cases, nature is adequately described without the use of calculus.

## Section summary

• Impulse, or change in momentum, equals the average net external force multiplied by the time this force acts:
$\Delta \mathbf{p}={\mathbf{F}}_{\text{net}}\Delta t.$
• Forces are usually not constant over a period of time.

## Conceptual questions

Professional Application

Explain in terms of impulse how padding reduces forces in a collision. State this in terms of a real example, such as the advantages of a carpeted vs. tile floor for a day care center.

## Problems&Exercises

A bullet is accelerated down the barrel of a gun by hot gases produced in the combustion of gun powder. What is the average force exerted on a 0.0300-kg bullet to accelerate it to a speed of 600 m/s in a time of 2.00 ms (milliseconds)?

$9\text{.}\text{00}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}N$

Professional Application

A car moving at 10 m/s crashes into a tree and stops in 0.26 s. Calculate the force the seat belt exerts on a passenger in the car to bring him to a halt. The mass of the passenger is 70 kg.

Professional Application

A professional boxer hits his opponent with a 1000-N horizontal blow that lasts for 0.150 s. (a) Calculate the impulse imparted by this blow. (b) What is the opponent’s final velocity, if his mass is 105 kg and he is motionless in midair when struck near his center of mass? (c) Calculate the recoil velocity of the opponent’s 10.0-kg head if hit in this manner, assuming the head does not initially transfer significant momentum to the boxer’s body. (d) Discuss the implications of your answers for parts (b) and (c).

Professional Application

One hazard of space travel is debris left by previous missions. There are several thousand objects orbiting Earth that are large enough to be detected by radar, but there are far greater numbers of very small objects, such as flakes of paint. Calculate the force exerted by a 0.100-mg chip of paint that strikes a spacecraft window at a relative speed of $4\text{.}\text{00}×{\text{10}}^{3}\phantom{\rule{0.25em}{0ex}}\text{m/s}$ , given the collision lasts $6\text{.}\text{00}×{\text{10}}^{–8}\phantom{\rule{0.25em}{0ex}}s$ .

Professional Application

A 75.0-kg person is riding in a car moving at 20.0 m/s when the car runs into a bridge abutment. (a) Calculate the average force on the person if he is stopped by a padded dashboard that compresses an average of 1.00 cm. (b) Calculate the average force on the person if he is stopped by an air bag that compresses an average of 15.0 cm.

(a) $1\text{.}\text{50}×{\text{10}}^{6}\phantom{\rule{0.25em}{0ex}}N$ away from the dashboard

(b) $1\text{.}\text{00}×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}N$ away from the dashboard

A cruise ship with a mass of $1\text{.}\text{00}×{\text{10}}^{7}\phantom{\rule{0.25em}{0ex}}\text{kg}$ strikes a pier at a speed of 0.750 m/s. It comes to rest 6.00 m later, damaging the ship, the pier, and the tugboat captain’s finances. Calculate the average force exerted on the pier using the concept of impulse. (Hint: First calculate the time it took to bring the ship to rest.)

$4\text{.}\text{69}×{\text{10}}^{5}\phantom{\rule{0.25em}{0ex}}\text{N}$ in the boat’s original direction of motion

A 0.450-kg hammer is moving horizontally at 7.00 m/s when it strikes a nail and comes to rest after driving the nail 1.00 cm into a board. (a) Calculate the duration of the impact. (b) What was the average force exerted on the nail?

When serving a tennis ball, a player hits the ball when its velocity is zero (at the highest point of a vertical toss). The racquet exerts a force of 540 N on the ball for 5.00 ms, giving it a final velocity of 45.0 m/s. Using these data, find the mass of the ball.

60.0 g

where we get a research paper on Nano chemistry....?
what are the products of Nano chemistry?
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
Preparation and Applications of Nanomaterial for Drug Delivery
revolt
da
Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
I only see partial conversation and what's the question here!
what about nanotechnology for water purification
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
what is a peer
What is meant by 'nano scale'?
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
(a) Find the recoil velocity of a 70.0-kg ice hockey goalie, originally at rest, who catches a 0.150-kg hockey puck slapped at him at a velocity of 35.0 m/s. (b) How much kinetic energy is lost during the collision? Assume friction between the ice and the puck-goalie system is negligible. (Figure 8.9)
Calculate the velocities of two objects following an elastic collision, given that m1 = 0.500 kg, m2 = 3.50 kg, v1 = 4.00 m/s, and v2 = 0.