<< Chapter < Page Chapter >> Page >

Arithmetic operations

There are four basic arithmetic operators in .m files:

+ addition

- subtraction

* multiplication

/ division (for matrices, it also means inversion)

The following three operators work on an element-by-element basis:

.* multiplication of two vectors, element-wise

./ division of two vectors, element-wise

.^ raising all the elements of a vector to a power

As an example, to evaluate the expression a 3 + bd 4c size 12{a rSup { size 8{3} } + sqrt { ital "bd"} - 4c} {} , where a = 1 . 2 size 12{a=1 "." 2} {} , b = 2 . 3 size 12{b=2 "." 3} {} , c = 4 . 5 size 12{c=4 "." 5} {} and d = 4 size 12{d=4} {} , type the following commands in the Command Window to get the answer (ans) :

>>a=1.2;

>>b=2.3;

>>c=4.5;

>>d=4;

>>a^3+sqrt(b*d)-4*c

ans =

-13.2388

Note the semicolon after each variable assignment. If the semicolon is omitted, the interpreter echoes back the variable value.

Vector operations

Consider the vectors x = [ x 1 , x 2 , . . . , x n ] size 12{ {}= \[ x rSub { size 8{1} } ,x rSub { size 8{2} } , "." "." "." ,x rSub { size 8{n} } \] } {} and y = [ y 1 , y 2 , . . . , y n ] size 12{ {}= \[ y rSub { size 8{1} } ,y rSub { size 8{2} } , "." "." "." ,y rSub { size 8{n} } \] } {} . The following operations indicate the resulting vectors:

x*.y = [ x 1 y 1 , x 2 y 2 , . . . , x n y n ] size 12{ {}= \[ x rSub { size 8{1} } y rSub { size 8{1} } ,x rSub { size 8{2} } y rSub { size 8{2} } , "." "." "." ,x rSub { size 8{n} } y rSub { size 8{n} } \] } {}

x./y = x 1 y 1 , x 2 y 3 , . . . , x n y n size 12{ {}= left [ { {x rSub { size 8{1} } } over {y rSub { size 8{1} } } } , { {x rSub { size 8{2} } } over {y rSub { size 8{3} } } } , "." "." "." , { {x rSub { size 8{n} } } over {y rSub { size 8{n} } } } right ]} {}

x.^p = x 1 p , x 2 p , . . . , x n p size 12{ {}= left [x rSub { size 8{1} } rSup { size 8{p} } ,x rSub { size 8{2} } rSup { size 8{p} } , "." "." "." ,x rSub { size 8{n} } rSup { size 8{p} } right ]} {}

Note that because the boldfacing of vectors/matrices are not used in .m files, in the notation adopted in this book, no boldfacing of vectors/matrices is shown to retain consistency with .m files.

The arithmetic operators + and – can be used to add or subtract matrices, vectors or scalars. Vectors denote one-dimensional arrays and matrices denote multidimensional arrays. For example,

>>x=[1,3,4]

>>y=[4,5,6]

>>x+y

ans=

5 8 10

In this example, the operator + adds the elements of the vectors x and y, element by element, assuming that the two vectors have the same dimension, in this case 1 × 3 size 12{1 times 3} {} or one row with three columns. An error occurs if one attempts to add vectors having different dimensions. The same applies for matrices.

To compute the dot product of two vectors (in other words, i x i y i size 12{ Sum cSub { size 8{i} } {x rSub { size 8{i} } y rSub { size 8{i} } } } {} ), use the multiplication operator ‘*’ as follows:

>>x*y'

ans =

43

Note the single quote after y denotes the transpose of a vector or a matrix.

To compute an element-by-element multiplication of two vectors (or two arrays), use the following operator:

>>x .* y

ans =

4 15 24

That is, x .* y means [ 1 × 4,3 × 5,4 × 6 ] size 12{ \[ 1 times 4,3 times 5,4 times 6 \] } {} = [ 4 15 24 ] size 12{ \[ matrix { 4 {} # "15" {} # "24" \]{} } } {} .

Complex numbers

LabVIEW MathScript supports complex numbers. The imaginary number is denoted with the symbol i or j, assuming that these symbols have not been used any other place in the program. It is critical to avoid such a symbol conflict for obtaining correct outcome. Enter the following and observe the outcomes:

>>z=3 + 4i % note the multiplication sign ‘*’ is not needed after 4

>>conj(z) % computes the conjugate of z

>>angle(z) % computes the phase of z

>>real(z) % computes the real part of z

>>imag(z) % computes the imaginary part of z

>>abs(z) % computes the magnitude of z

One can also define an imaginary number with any other user-specified variables. For example, try the following:

>>img=sqrt(-1)

>>z=3+4*img

>>exp(pi*img)

Array indexing

In .m files, all arrays (vectors) are indexed starting from 1 − in other words, x(1) denotes the first element of the array x. Note that the arrays are indexed using parentheses (.) and not square brackets [.], as done in C/C++. To create an array featuring the integers 1 through 6 as elements, enter:

Questions & Answers

Application of nanotechnology in medicine
what is variations in raman spectra for nanomaterials
Jyoti Reply
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
hi
Loga
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, An interactive approach to signals and systems laboratory. OpenStax CNX. Sep 06, 2012 Download for free at http://cnx.org/content/col10667/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An interactive approach to signals and systems laboratory' conversation and receive update notifications?

Ask