<< Chapter < Page Chapter >> Page >

. Xác định chỉ số cột pivot s :

c ¯ s = max c ¯ k > 0 c ¯ N size 12{ {overline {c}} rSub { size 8{s} } = "max"" " left lbrace {overline {c}} rSub { size 8{k} }>0 in {overline {c}} rSub { size 8{N} } right rbrace } {} = max 3 = 3 = c __ 2 size 12{ {}="max " left lbrace " 3 " right rbrace =3= {c} cSup { size 8{"__"} } rSub { size 8{2} } } {}

Vậy s=2

Ma trận cột s=2 trong ma trận N ¯ size 12{ {overline {N}} } {} - 1 3 1 righ N ¯ 2 = size 12{ {overline {N}} rSub { size 8{2} } =alignl { stack { left [" -"1 {} #right ] left [" 3" {} #right ] left [" 1" {} #righ]} } \[ \]} {}

. Xác định chỉ số dòng pivot r :

min b ¯ i N ˉ is = min b ¯ 2 N ¯ 22 , b ¯ 3 N ¯ 23 = min 3 3 , 5 1 = 1 = b ¯ 2 N ˉ 22 size 12{"min " left lbrace { { {overline {b}} rSub { size 8{i} } } over { { bar {N}} rSub { size 8{"is"} } } } right rbrace ="min " left lbrace { { {overline {b}} rSub { size 8{2} } } over { {overline {N}} rSub { size 8{"22"} } } } , { { {overline {b}} rSub { size 8{3} } } over { {overline {N}} rSub { size 8{"23"} } } } right rbrace ="min" left lbrace { {3} over {3} } , { {5} over {1} } right rbrace =1= { { {overline {b}} rSub { size 8{2} } } over { { bar {N}} rSub { size 8{"22"} } } } } {}

Vậy r = 2

e- Hoán vị

. Cột thứ s=2 trong ma trận N và cột thứ r=2 trong ma trận B

. Phần tử thứ s=2 trong c N T size 12{c rSub { size 8{N} } rSup { size 8{T} } } {} với phần tử thứ r=2 trong c B T size 12{c rSub { size 8{B} } rSup { size 8{T} } } {}

. Biến thứ s=2 trong x N T size 12{x rSub { size 8{N} } rSup { size 8{T} } } {} với biến thứ r=2 trong x B T size 12{x rSub { size 8{B} } rSup { size 8{T} } } {}

A = 1 1 1 0 0 0 2 1 1 0 0 2 1 0 1 A = 1 0 1 1 0 0 1 1 2 0 0 0 1 2 1 size 12{A= left [ matrix { 1 {} # - 1 {} # \lline {} # 1 {} # 0 {} # 0 {} ##0 {} # 2 {} # \lline {} # 1 {} # 1 {} # 0 {} ## 0 {} # 2 {} # \lline {} # - 1 {} # 0 {} # 1{}} right ] rightarrow A= left [ matrix {1 {} # 0 {} # \lline {} # 1 {} # - 1 {} # 0 {} ## 0 {} # 1 {} # \lline {} # 1 {} # 2 {} # 0 {} ##0 {} # 0 {} # \lline {} # - 1 {} # 2 {} # 1{} } right ]" "} {}

c T = 0 1 2 0 0 c T = 0 0 2 1 0 size 12{c rSup { size 8{T} } = left [ matrix { 0 {} # 1 {} # \lline {} # 2 {} # 0 {} # 0{}} right ]" " rightarrow " c" rSup { size 8{T} } = left [ matrix {0 {} # 0 {} # \lline {} # 2 {} # 1 {} # 0{} } right ]} {}

x T = x 3 x 2 x 1 x 4 x 5 x T = x 3 x 4 x 1 x 2 x 5 size 12{x rSup { size 8{T} } = left [ matrix { x rSub { size 8{3} } {} # x rSub { size 8{2} } {} # \lline {} # x rSub { size 8{1} } {} # x rSub { size 8{4} } {} # x rSub { size 8{5} } {}} right ] rightarrow " x" rSup { size 8{T} } = left [ matrix {x rSub { size 8{3} } {} # x rSub { size 8{4} } {} # \lline {} # x rSub { size 8{1} } {} # x rSub { size 8{2} } {} # x rSub { size 8{5} } {} } right ]} {}

f- Quay về bước a

Lần lặp 3

a. Tính ma trận nghịch đảo B-1

2 3 1 3 0 1 3 1 3 0 4 3 - 1 3 1 righ B = 1 -1 0 1 2 0 1 2 1 B 1 = size 12{B= left [ matrix { 1 {} # "-1" {} # 0 {} ##1 {} # 2 {} # 0 {} ## - 1 {} # 2 {} # 1{}} right ]" B" rSup { size 8{ - 1} } =alignl { stack {left [" " { {2} over {3} } " " { {1} over {3} } " 0" {} # right ]left [ - { {1} over {3} } " " { {1} over {3} } " 0" {} # right ]left [" " { {4} over {3} } " -" { {1} over {3} } " 1" {} # righ]} } \[ \] } {}

b- Tính các tham số

. Phương án cơ sở khả thi tốt hơn :

x 1 x 2 x 5 righ 2 3 1 3 0 1 3 1 3 0 4 3 - 1 3 1 righ [ ] 3 6 2 righ 4 1 4 righ x 3 x 4 righ 0 0 righ [ ] x B = x = size 12{x=alignl { stack { left [x rSub { size 8{B} } =alignl { stack {left [x rSub { size 8{1} } {} # right ]left [x rSub { size 8{2} } {} # right ]left [x rSub { size 8{5} } {} # righ]} } \[ \] =B rSup { size 8{ - 1} } b=alignl { stack {left [" " { {2} over {3} } " " { {1} over {3} } " 0" {} # right ]left [ - { {1} over {3} } " " { {1} over {3} } " 0" {} # right ]left [" " { {4} over {3} } " -" { {1} over {3} } " 1" {} # righ]} } \[ \] alignl { stack {left [3 {} # right ]left [6 {} # right ]left [2 {} # righ]} } \[ \] =alignl { stack {left [4 {} # right ]left [1 {} # right ]left [4 {} # righ]} } \[ \] = {overline {b}} {} #right ] left [x rSub { size 8{N} } =alignl { stack {left [x rSub { size 8{3} } {} # right ]left [x rSub { size 8{4} } {} # righ]} } \[ \] =alignl { stack {left [0 {} # right ]left [0 {} # righ]} } \[ \] {} #righ]} } \[ \]} {}

. Giá trị hàm mục tiêu :

z ( x ) = c B T x B = 2 1 0 4 1 4 = 9 size 12{z \( x \) =c rSub { size 8{B} } rSup { size 8{T} } x rSub { size 8{B} } = left [ matrix { 2 {} # 1 {} # 0{}} right ] left [ matrix {4 {} ## 1 {} ##4 } right ]=9} {} {}

. Tính ma trận :

2 3 1 3 0 1 3 1 3 0 4 3 - 1 3 1 righ 2 3 1 3 1 3 1 3 4 3 - 1 3 righ N __ = B 1 N = size 12{ {N} cSup { size 8{"__"} } =B rSup { size 8{ - 1} } N=alignl { stack { left [" " { {2} over {3} } " " { {1} over {3} } " 0" {} #right ] left [ - { {1} over {3} } " " { {1} over {3} } " 0" {} #right ] left [" " { {4} over {3} } " -" { {1} over {3} } " 1" {} #righ]} } \[ \]left [ matrix { " 1" {} # 0 {} ##" 0" {} # " 1" {} ## 0 {} # " 0"{}} right ]=alignl { stack {left [ { {2} over {3} } " " { {1} over {3} } {} # right ]left [ - { {1} over {3} } " " { {1} over {3} } {} # right ]left [ { {4} over {3} } " -" { {1} over {3} } {} # righ]} } \[ \] } {} {}

c- Xét dấu hiệu tối ưu :

c ¯ N T = c N T c B T N __ = 0 0 2 1 0 2 3 1 3 1 3 1 3 4 3 - 1 3 righ size 12{ {overline {c}} rSub { size 8{N} } rSup { size 8{T} } =c rSub { size 8{N} } rSup { size 8{T} } - c rSub { size 8{B} } rSup { size 8{T} } {N} cSup { size 8{"__"} } = left [ matrix { 0 {} # 0{}} right ] - left [2" 1 0" right ]alignl { stack { left [ { {2} over {3} } " " { {1} over {3} } {} #right ] left [ - { {1} over {3} } " " { {1} over {3} } {} #right ] left [ { {4} over {3} } " -" { {1} over {3} } {} #righ]} } \[ \]= left [ - 1" -1" right ]<0} {} : dừng

Vậy phương án tối ưu sẽ là :

x B = x 1 x 2 x 5 = 4 1 4 x N = x 3 x 4 = 0 0 { size 12{alignl { stack { left lbrace x rSub { size 8{B} } = left [ matrix {x rSub { size 8{1} } {} ## x rSub { size 8{2} } {} ##x rSub { size 8{5} } } right ]= left [ matrix { 4 {} ##1 {} ## 4} right ] {} #right none left lbrace x rSub { size 8{N} } = left [ matrix { x rSub { size 8{3} } {} ##x rSub { size 8{4} } } right ]= left [ matrix { 0 {} ##0 } right ]{} # right no } } lbrace } {}

Giá trị hàm mục tiêu là z(x) = 9 với x1 = 4 và x2 = 1

Chú ý trong trường hợp suy biến

Trong trường hợp bài toán suy biến, nghĩa là b ¯ r = 0 size 12{ {overline {b}} rSub { size 8{r} } =0} {} , ta có :

x s = b ¯ r a ¯ rs = 0 size 12{ {x} cSup { size 8{ and } } rSub { size 8{s} } = { { {overline {b}} rSub { size 8{r} } } over { {overline {a}} rSub { size 8{ ital "rs"} } } } =0} {}

cho nên giá trị của hàm mục tiêu không thay đổi khi thay đổi cơ sở, vì :

z ( x ) = z ( x ) + c ¯ s x s = z ( x ) size 12{z \( {x} cSup { size 8{ and } } \) =z \( x \) + {overline {c}} rSub { size 8{s} } {x} cSup { size 8{ and } } rSub { size 8{s} } =z \( x \) } {}

Vậy thì, có thể sau một số lần thay đổi cơ sở lại quay trở về cơ sở đã gặp và lặp như vậy một cách vô hạn. Người ta có nhiều cách để khắc phục hiện tượng này bằng cách xáo trộn một chút các dữ liệu của bài toán, sử dụng thủ tục từ vựng, quy tắc chọn pivot để tránh bị khử.

Giải thuật đơn hình cải tiến

Một cách tính ma trận nghịch đảo

Trong giải thuật đơn hình cơ bản hai ma trận kề B và B size 12{ {B} cSup { size 8{ and } } } {} chỉ khác nhau một cột vì vậy có thể tính ma trận nghịch đảo B 1 size 12{ {B} cSup { size 8{ and } } rSup { size 8{ - 1} } } {} một cách dễ dàng từ B-1 . Để làm điều đó chỉ cần nhân (bên trái) B-1 với một ma trận đổi cơ sở được xác định như sau :

μ = 1 0 . . a ¯ 1s a ¯ rs . . 0 0 1 . . a ¯ 2s a ¯ rs . . 0 . . . . . . . . . . . . 0 0 . . 1 a ¯ rs . . 0 . . . . . . . . . . . . 0 0 . . a ¯ ms a ¯ rs . . 1 dòng r côt r alignl { stack { size 12{μ= left [ matrix {1 {} # 0 {} # "." "." {} # { { - {overline {a}} rSub { size 8{"1s"} } } over { {overline {a}} rSub { size 8{"rs"} } } } {} # "." "." {} # 0 {} ## 0 {} # 1 {} # "." "." {} # { { - {overline {a}} rSub { size 8{"2s"} } } over { {overline {a}} rSub { size 8{"rs"} } } } {} # "." "." {} # 0 {} ##"." "." {} # "." "." {} # "." "." {} # "." "." {} # "." "." {} # "." "." {} ## 0 {} # 0 {} # "." "." {} # { {1} over { {overline {a}} rSub { size 8{"rs"} } } } {} # "." "." {} # 0 {} ##"." "." {} # "." "." {} # "." "." {} # "." "." {} # "." "." {} # "." "." {} ## 0 {} # 0 {} # "." "." {} # { { - {overline {a}} rSub { size 8{"ms"} } } over { {overline {a}} rSub { size 8{"rs"} } } } {} # "." "." {} # 1{}} right ] matrix {{} ## rightarrow " dòng r"} } {} # " " uparrow " côt r" {}} } {}

Khi đó :

B ˆ 1 = μB 1 size 12{ {B} cSup { size 8{ widehat } } rSup { size 8{ - 1} } =μB rSup { size 8{ - 1} } } {}

Ta thấy rằng ma trận đổi cơ sở  được thiết lập giống như một ma trận đơn vị mxm, trong đó cột r có các thành phần được xác định như sau :

a ¯ is a ¯ rs size 12{ { { - {overline {a}} rSub { size 8{ ital "is"} } } over { {overline {a}} rSub { size 8{ ital "rs"} } } } } {} : đối với thành phần i  r.

1 a ¯ rs size 12{ { {1} over { {overline {a}} rSub { size 8{ ital "rs"} } } } } {} : đối với thành phần r .

Khi mà ma trận cở sở xuất phát là ma trận đơn vị, sau một số bước đổi cơ sở B0 B1 B2 ....... Bq tương ứng với các ma trận đổi cơ sở 0 1 2 .…...q-1 người ta có cách tính ma trận nghịch đảo như sau :

B q 1 = μ 0 . μ 1 . . . . . . . μ q 1 size 12{ left [B rSup { size 8{q} } right ] rSup { size 8{ - 1} } =μ rSup { size 8{0} } "." μ rSup { size 8{1} } "." "." "." "." "." "." "." μ rSup { size 8{q - 1} } } {}

Quy hoạch tuyến tính dạng chuẩn

Quy hoạch tuyến tính dạng chuẩn là quy hoạch tuyến tính chính tắc mà trong đó có thể rút ra một ma trận cơ sở là ma trận đơn vị. Quy hoạch tuyến tính chuẩn có dạng :

min/max z ( x ) = c T x [ I N ] x = b x 0 { alignl { stack { size 12{"min/max"" "z \( x \) =c rSup { size 8{T} } x} {} #alignl { stack { left lbrace \[ I" N" \]x=b {} # right none left lbrace x>= 0 {} # right no } } lbrace {}} } {}

Giải thuật đơn hình cải tiến

Từ những kết quả trên người ta xây dựng giải thuật đơn hình cải tiến đối với bài toán qui hoạch tuyến tính (max) dạng chuẩn như sau :

a- Khởi tạo

A ¯ 0 = A size 12{ {overline {A}} rSub { size 8{0} } =A} {}

b ¯ 0 = b size 12{ {overline {b}} rSub { size 8{0} } =b} {}

b- Thực hiện bước lặp với k = 0,1,2, ...

. Xác định phương án cơ sở khả thi :

x B k = b ¯ k x N k = 0 righ x k = size 12{x rSup { size 8{k} } =alignl { stack { left [x rSub { size 8{B rSub { size 6{k} } } } = {overline {b}} rSub {k} {} #right ] left [ size 12{x rSub {N rSub { size 6{k} } } size 12{ {}=0}} {} #righ]} } size 12{ \[ \]}} {}

. Tính giá trị hàm mục tiêu :

z ( x k ) = c B k T x B k = c B k T b ¯ k size 12{z \( x rSup { size 8{k} } \) =c rSub { size 8{B rSub { size 6{k} } } } rSup {T} size 12{x rSub {B rSub { size 6{k} } } } size 12{ {}=c rSub {B rSub { size 6{k} } } rSup {T} {overline { size 12{b} }} rSub {k} }} {}

. Xét dấu hiệu tối ưu :

c ¯ k T = c T c B k T A ¯ k size 12{ {overline {c}} rSub { size 8{k} } rSup { size 8{T} } =c rSup { size 8{T} } - c rSub { size 8{B rSub { size 6{k} } } } rSup {T} {overline { size 12{A} }} rSub {k} } {}

- Nếu c ¯ k T 0 size 12{ {overline {c}} rSub { size 8{k} } rSup { size 8{T} }<= 0} {} thì giải thuật dừng và :

x B k = b ¯ k x N k = 0 righ x k = size 12{x rSup { size 8{k} } =alignl { stack { left [x rSub { size 8{B rSub { size 6{k} } } } = {overline {b}} rSub {k} {} #right ] left [ size 12{x rSub {N rSub { size 6{k} } } size 12{ {}=0}} {} #righ]} } size 12{ \[ \]}} {} là phương án tối ưu

z ( x k ) = c B k T x B k = c B k T b ¯ k size 12{z \( x rSup { size 8{k} } \) =c rSub { size 8{B rSub { size 6{k} } } } rSup {T} size 12{x rSub {B rSub { size 6{k} } } } size 12{ {}=c rSub {B rSub { size 6{k} } } rSup {T} {overline { size 12{b} }} rSub {k} }} {} là giá trị hàm mục tiêu

Questions & Answers

what is the coefficient of -4×
Mehri Reply
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
Kala Reply
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
Moses Reply
12, 17, 22.... 25th term
Alexandra Reply
12, 17, 22.... 25th term
Akash
College algebra is really hard?
Shirleen Reply
Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table.
Carole
I'm 13 and I understand it great
AJ
I am 1 year old but I can do it! 1+1=2 proof very hard for me though.
Atone
hi
Adu
Not really they are just easy concepts which can be understood if you have great basics. I am 14 I understood them easily.
Vedant
find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
Abhi
If f(x) = x-2 then, f(3) when 5f(x+1) 5((3-2)+1) 5(1+1) 5(2) 10
Augustine
how do they get the third part x = (32)5/4
kinnecy Reply
make 5/4 into a mixed number, make that a decimal, and then multiply 32 by the decimal 5/4 turns out to be
AJ
how
Sheref
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
hi
Ayuba
Hello
opoku
hi
Ali
greetings from Iran
Ali
salut. from Algeria
Bach
hi
Nharnhar
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place.
Kimberly Reply
Jeannette has $5 and $10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
August Reply
What is the expressiin for seven less than four times the number of nickels
Leonardo Reply
How do i figure this problem out.
how do you translate this in Algebraic Expressions
linda Reply
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Quy hoạch tuyến tính. OpenStax CNX. Aug 08, 2009 Download for free at http://cnx.org/content/col10903/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Quy hoạch tuyến tính' conversation and receive update notifications?

Ask
Danielrosenberger
Start Quiz