<< Chapter < Page Chapter >> Page >

Introduction

We have already studied transverse pulses and waves. In this chapter we look at another type of wave called longitudinal waves. In transverse waves, the motion of the particles in the medium were perpendicular to the direction of the wave. In longitudinal waves, the particles in the medium move parallel (in the same direction as) to the motion of the wave. Examples of transverse waves are water waves or light waves. An example of a longitudinal wave is a sound wave.

What is a longitudinal wave ?

Longitudinal waves
A longitudinal wave is a wave where the particles in the medium move parallel to the direction of propagation of the wave.

When we studied transverse waves we looked at two different motions: the motion of the particles of the medium and the motion of the wave itself. We will do the same for longitudinal waves.

The question is how do we construct such a wave?

To create a transverse wave, we flick the end of for example a rope up and down. The particles move up and down and return to their equilibrium position. The wave moves from left to right and will be displaced.

A longitudinal wave is seen best in a spring that is hung from a ceiling. Do the following investigation to find out more about longitudinal waves.

Investigation : investigating longitudinal waves

  1. Take a spring and hang it from the ceiling. Pull the free end of the spring and release it. Observe what happens.
  2. In which direction does the disturbance move?
  3. What happens when the disturbance reaches the ceiling?
  4. Tie a ribbon to the middle of the spring. Watch carefully what happens to the ribbon when the free end of the spring is pulled and released. Describe the motion of the ribbon.

From the investigation you will have noticed that the disturbance moves parallel to the direction in which the spring was pulled. The spring was pulled down and the wave moved up and down. The ribbon in the investigation represents one particle in the medium. The particles in the medium move in the same direction as the wave. The ribbon moves from rest upwards, then back to its original position, then down and then back to its original position.

Longitudinal wave through a spring

Characteristics of longitudinal waves

As in the case of transverse waves the following properties can be defined for longitudinal waves: wavelength, amplitude, period, frequency and wave speed. However instead of peaks and troughs, longitudinal waves have compressions and rarefactions .

Compression
A compression is a region in a longitudinal wave where the particles are closest together.
Rarefaction
A rarefaction is a region in a longitudinal wave where the particles are furthest apart.

Compression and rarefaction

As seen in [link] , there are regions where the medium is compressed and other regions where the medium is spread out in a longitudinal wave.

The region where the medium is compressed is known as a compression and the region where the medium is spread out is known as a rarefaction .

Compressions and rarefactions on a longitudinal wave

Wavelength and amplitude

Wavelength
The wavelength in a longitudinal wave is the distance between two consecutive points that are in phase.

The wavelength in a longitudinal wave refers to the distance between two consecutive compressions or between two consecutive rarefactions.

Amplitude
The amplitude is the maximum displacement from equilibrium. For a longitudinal wave which is a pressure wave this would be the maximum increase (or decrease) in pressure from the equilibrium pressure that is cause when a peak (or trough) passes a point.
Wavelength on a longitudinal wave

The amplitude is the distance from the equilibrium position of the medium to a compression or a rarefaction.

Period and frequency

Period
The period of a wave is the time taken by the wave to move one wavelength.
Frequency
The frequency of a wave is the number of wavelengths per second.

The period of a longitudinal wave is the time taken by the wave to move one wavelength. As for transverse waves, the symbol T is used to represent period and period is measured in seconds (s).

The frequency f of a wave is the number of wavelengths per second. Using this definition and the fact that the period is the time taken for 1 wavelength, we can define:

f = 1 T

or alternately,

T = 1 f

Speed of a longitudinal wave

The speed of a longitudinal wave is defined as:

v = f · λ

where

  • v = speed in m · s - 1
  • f = frequency in Hz
  • λ = wavelength in m

The musical note “A” is a sound wave. The note has a frequency of 440 Hz and a wavelength of 0,784 m. Calculate the speed of the musical note.

  1. f = 440 Hz λ = 0 , 784 m

    We need to calculate the speed of the musical note “A”.

  2. We are given the frequency and wavelength of the note. We can therefore use:

    v = f · λ
  3. v = f · λ = ( 440 Hz ) ( 0 , 784 m ) = 345 m · s - 1
  4. The musical note “A” travels at 345 m · s - 1 .

A longitudinal wave travels into a medium in which its speed increases. How does this affect its... (write only increases, decreases, stays the same ).

  1. period?
  2. wavelength?
  1. We need to determine how the period and wavelength of a longitudinal wave change when its speed increases.

  2. We need to find the link between period, wavelength and wave speed.

  3. We know that the frequency of a longitudinal wave is dependent on the frequency of the vibrations that lead to the creation of the longitudinal wave. Therefore, the frequency is always unchanged, irrespective of any changes in speed. Since the period is the inverse of the frequency, the period remains the same.

  4. The frequency remains unchanged. According to the wave equation

    v = f λ

    if f remains the same and v increases, then λ , the wavelength, must also increase.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Siyavula textbooks: grade 10 physical science [caps]. OpenStax CNX. Sep 30, 2011 Download for free at http://cnx.org/content/col11305/1.7
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Siyavula textbooks: grade 10 physical science [caps]' conversation and receive update notifications?

Ask