<< Chapter < Page Chapter >> Page >

High altitude effects

An increase in altitude results in a decrease in atmospheric pressure. Although the proportion of oxygen relative to gases in the atmosphere remains at 21 percent, its partial pressure decreases ( [link] ). As a result, it is more difficult for a body to achieve the same level of oxygen saturation at high altitude than at low altitude, due to lower atmospheric pressure. In fact, hemoglobin saturation is lower at high altitudes compared to hemoglobin saturation at sea level. For example, hemoglobin saturation is about 67 percent at 19,000 feet above sea level, whereas it reaches about 98 percent at sea level.

Partial Pressure of Oxygen at Different Altitudes
Example location Altitude (feet above sea level) Atmospheric pressure (mm Hg) Partial pressure of oxygen (mm Hg)
New York City, New York 0 760 159
Boulder, Colorado 5000 632 133
Aspen, Colorado 8000 565 118
Pike’s Peak, Colorado 14,000 447 94
Denali (Mt. McKinley), Alaska 20,000 350 73
Mt. Everest, Tibet 29,000 260 54

As you recall, partial pressure is extremely important in determining how much gas can cross the respiratory membrane and enter the blood of the pulmonary capillaries. A lower partial pressure of oxygen means that there is a smaller difference in partial pressures between the alveoli and the blood, so less oxygen crosses the respiratory membrane. As a result, fewer oxygen molecules are bound by hemoglobin. Despite this, the tissues of the body still receive a sufficient amount of oxygen during rest at high altitudes. This is due to two major mechanisms. First, the number of oxygen molecules that enter the tissue from the blood is nearly equal between sea level and high altitudes. At sea level, hemoglobin saturation is higher, but only a quarter of the oxygen molecules are actually released into the tissue. At high altitudes, a greater proportion of molecules of oxygen are released into the tissues. Secondly, at high altitudes, a greater amount of BPG is produced by erythrocytes, which enhances the dissociation of oxygen from hemoglobin. Physical exertion, such as skiing or hiking, can lead to altitude sickness due to the low amount of oxygen reserves in the blood at high altitudes. At sea level, there is a large amount of oxygen reserve in venous blood (even though venous blood is thought of as “deoxygenated”) from which the muscles can draw during physical exertion. Because the oxygen saturation is much lower at higher altitudes, this venous reserve is small, resulting in pathological symptoms of low blood oxygen levels. You may have heard that it is important to drink more water when traveling at higher altitudes than you are accustomed to. This is because your body will increase micturition (urination) at high altitudes to counteract the effects of lower oxygen levels. By removing fluids, blood plasma levels drop but not the total number of erythrocytes. In this way, the overall concentration of erythrocytes in the blood increases, which helps tissues obtain the oxygen they need.

Acute mountain sickness (AMS) , or altitude sickness, is a condition that results from acute exposure to high altitudes due to a low partial pressure of oxygen at high altitudes. AMS typically can occur at 2400 meters (8000 feet) above sea level. AMS is a result of low blood oxygen levels, as the body has acute difficulty adjusting to the low partial pressure of oxygen. In serious cases, AMS can cause pulmonary or cerebral edema. Symptoms of AMS include nausea, vomiting, fatigue, lightheadedness, drowsiness, feeling disoriented, increased pulse, and nosebleeds. The only treatment for AMS is descending to a lower altitude; however, pharmacologic treatments and supplemental oxygen can improve symptoms. AMS can be prevented by slowly ascending to the desired altitude, allowing the body to acclimate, as well as maintaining proper hydration.

Acclimatization

Especially in situations where the ascent occurs too quickly, traveling to areas of high altitude can cause AMS. Acclimatization is the process of adjustment that the respiratory system makes due to chronic exposure to a high altitude. Over a period of time, the body adjusts to accommodate the lower partial pressure of oxygen. The low partial pressure of oxygen at high altitudes results in a lower oxygen saturation level of hemoglobin in the blood. In turn, the tissue levels of oxygen are also lower. As a result, the kidneys are stimulated to produce the hormone erythropoietin (EPO), which stimulates the production of erythrocytes, resulting in a greater number of circulating erythrocytes in an individual at a high altitude over a long period. With more red blood cells, there is more hemoglobin to help transport the available oxygen. Even though there is low saturation of each hemoglobin molecule, there will be more hemoglobin present, and therefore more oxygen in the blood. Over time, this allows the person to partake in physical exertion without developing AMS.

Chapter review

Normally, the respiratory centers of the brain maintain a consistent, rhythmic breathing cycle. However, in certain cases, the respiratory system must adjust to situational changes in order to supply the body with sufficient oxygen. For example, exercise results in increased ventilation, and chronic exposure to a high altitude results in a greater number of circulating erythrocytes. Hyperpnea, an increase in the rate and depth of ventilation, appears to be a function of three neural mechanisms that include a psychological stimulus, motor neuron activation of skeletal muscles, and the activation of proprioceptors in the muscles, joints, and tendons. As a result, hyperpnea related to exercise is initiated when exercise begins, as opposed to when tissue oxygen demand actually increases.

In contrast, acute exposure to a high altitude, particularly during times of physical exertion, does result in low blood and tissue levels of oxygen. This change is caused by a low partial pressure of oxygen in the air, because the atmospheric pressure at high altitudes is lower than the atmospheric pressure at sea level. This can lead to a condition called acute mountain sickness (AMS) with symptoms that include headaches, disorientation, fatigue, nausea, and lightheadedness. Over a long period of time, a person’s body will adjust to the high altitude, a process called acclimatization. During acclimatization, the low tissue levels of oxygen will cause the kidneys to produce greater amounts of the hormone erythropoietin, which stimulates the production of erythrocytes. Increased levels of circulating erythrocytes provide an increased amount of hemoglobin that helps supply an individual with more oxygen, preventing the symptoms of AMS.

Questions & Answers

structure of a serous membrane
Ziyanda Reply
are you asking?
Isa
yes
MOHD
In anatomy, serous membrane (or serosa) is a smooth tissue membrane consisting of two layers of mesothelium, which secrete serous fluid. The inner layer that covers organs (viscera) in body cavities is called the visceral membrane. A second layer of epithelial cells of the serous membrane, called th
Isa
The two layers of serous membranes are named parietal and visceral. Between the two layers is a thin fluid filled space.[2] The fluid is produced by the serous membranes and stays between the two layers to reduce friction between the walls of the cavities and the internal organs when they move with
Isa
a continuation from the 1st one:: A second layer of epithelial cells of the serous membrane, called the parietal layer, lines the body wall. Between the two layers is a potential space, mostly empty except for a few milliliters of lubricating serous fluid that is secreted by the two serous membranes
Isa
Name the two phases of metabolism
Grace Reply
reproduction and growth
Zozo
how about anabolism and catabolism?
Japhar
In Simply Anabolism means formation... Catabolism means breakdown
Jazil
two phases of reproductio?
Japhar
Anabolism indicates potential & catabolism potential converts to kinetic
Doctor
Name the most important life process in the human body in terms of anatomy and physiology
Grace
Nervous system
Nimco
Every system is important for body functions
Jazil
what is the difference between the functions of the adhesion belt and the desmosomes?
Mason Reply
what are the derivatives of the germ layer?
Miriam Reply
zygote
Zozo
Pls explain the atlas of the cervical vertebral column
Ifunanya Reply
why does the material not allow in mri
Simran Reply
what do you mean 'mri'
Nimco
short for magnetic resonance imaging. "the researchers used MRI to record the brain activity" a medical examination performed using magnetic resonance imaging. "he's having an MRI to determine the extent of the injury" an image obtained by magnetic resonance imaging. "after looking at the MRI, the d
Riyaz
what is the meaning of sutures
Ibrahim Reply
i do not know
Nimo
immovable joints btn two bones.eg the skull bones
Japhar
Really,it's true
Nimco
Sutures are immovable junction between two bones e.g those of the skull
Surphy
what should I do to get or to know what to do for me to be excellent in the course of anatomy and physiology
Sandra Reply
study harder
Japhar
Between the heart and the Brain which one is more important to human being... discuss
Faith Reply
well the brain is important for motor skills, the heart is important for involuntary muscle movement supporting body functions. the body can survive without brain involvement, but the body cannot last without the heart
john
granted the heart is important, but the brain gives the body purpose
john
the brain is more important
Kevin
why?
john
brain
tracey
Even though the brain helps the human being to behave normally and purposefully, I think the heart is much more important cos human being cannot live without the heart
Dzifa
why?
john
change the question
Bind
hello guys
Kevin
heart
Kevin
it is difficult to select which organ is more important, now you can replace the heart with a mechanical device and the body could still function, and with technology today brain activity can also be replicated. But life would not be the same
john
there's coordination btn the two..so without any of them no life
Japhar
the heart
The brain is important to humans.
Zozo
what is homeostasis
Rebecca Reply
It is the condition when body feel comfortable
Jazil
Wo feels hungry, thirty due to homeostasis
Jazil
Is the maintenance of the internal environment of all the body cells for normal growth
Komolika
what is the composition of saliva
Vijay Reply
ഫസ്റ്റ് ചാപ്റ്റർ ഇംപോർട്ടൻസ് പോസ്റ്റ്
Reshma Reply
Yes....
Loving
nhi samjh aya
Anshika
Nhi wt is this
Loving
I don't know
Anshika
Okk wre frm u r
Loving
what is mean of? reshma
Asad
I don't know but would like to
Rebecca
D bone in d ankle joint re what ?
Ifunanya Reply
patellar
Ibrahim
I thought that patella us the bone found in the knee cap
Ifunanya
fib and tib join with tarsal form ankle joint
Ava
Thanks
Ifunanya
can one define a cell as a basic unit of a living organism
Michael Reply
cell is the structural and functional unit of living organisms
Fidel
Which of the following hormones are responsible for the adolescent growth spurt? estrogen and testosterone, even in women?
Kepa Reply
estrogen
Farhana
Estrogen!
Jazil
estrogen hormone
Michael
yes estrogen hormone
Anshika
yes
Sale
testrogen
Rebecca

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask