<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe intercalated discs and gap junctions
  • Describe a desmosome

Cardiac muscle tissue is only found in the heart. Highly coordinated contractions of cardiac muscle pump blood into the vessels of the circulatory system. Similar to skeletal muscle, cardiac muscle is striated and organized into sarcomeres, possessing the same banding organization as skeletal muscle ( [link] ). However, cardiac muscle fibers are shorter than skeletal muscle fibers and usually contain only one nucleus, which is located in the central region of the cell. Cardiac muscle fibers also possess many mitochondria and myoglobin, as ATP is produced primarily through aerobic metabolism. Cardiac muscle fibers cells also are extensively branched and are connected to one another at their ends by intercalated discs. An intercalated disc    allows the cardiac muscle cells to contract in a wave-like pattern so that the heart can work as a pump.

Cardiac muscle tissue

This image is a micrograph of cardiac muscle cells.
Cardiac muscle tissue is only found in the heart. LM × 1600. (Micrograph provided by the Regents of University of Michigan Medical School © 2012)

View the University of Michigan WebScope at (External Link) to explore the tissue sample in greater detail.

Intercalated discs are part of the sarcolemma and contain two structures important in cardiac muscle contraction: gap junctions and desmosomes. A gap junction forms channels between adjacent cardiac muscle fibers that allow the depolarizing current produced by cations to flow from one cardiac muscle cell to the next. This joining is called electric coupling, and in cardiac muscle it allows the quick transmission of action potentials and the coordinated contraction of the entire heart. This network of electrically connected cardiac muscle cells creates a functional unit of contraction called a syncytium. The remainder of the intercalated disc is composed of desmosomes. A desmosome    is a cell structure that anchors the ends of cardiac muscle fibers together so the cells do not pull apart during the stress of individual fibers contracting ( [link] ).

Cardiac muscle

This image shows the structure of the cardiac muscle. A small image of the heart is shown on the top left of the figure and then a magnified view of the cardiac muscle is shown, with the nucleus and the cardiac muscle fiber labeled. A further magnification shows the structure of the intercalated discs with the desmosome and gap junction.
Intercalated discs are part of the cardiac muscle sarcolemma and they contain gap junctions and desmosomes.

Contractions of the heart (heartbeats) are controlled by specialized cardiac muscle cells called pacemaker cells that directly control heart rate. Although cardiac muscle cannot be consciously controlled, the pacemaker cells respond to signals from the autonomic nervous system (ANS) to speed up or slow down the heart rate. The pacemaker cells can also respond to various hormones that modulate heart rate to control blood pressure.

The wave of contraction that allows the heart to work as a unit, called a functional syncytium, begins with the pacemaker cells. This group of cells is self-excitable and able to depolarize to threshold and fire action potentials on their own, a feature called autorhythmicity    ; they do this at set intervals which determine heart rate. Because they are connected with gap junctions to surrounding muscle fibers and the specialized fibers of the heart’s conduction system, the pacemaker cells are able to transfer the depolarization to the other cardiac muscle fibers in a manner that allows the heart to contract in a coordinated manner.

Another feature of cardiac muscle is its relatively long action potentials in its fibers, having a sustained depolarization “plateau.” The plateau is produced by Ca ++ entry though voltage-gated calcium channels in the sarcolemma of cardiac muscle fibers. This sustained depolarization (and Ca ++ entry) provides for a longer contraction than is produced by an action potential in skeletal muscle. Unlike skeletal muscle, a large percentage of the Ca ++ that initiates contraction in cardiac muscles comes from outside the cell rather than from the SR.

Chapter review

Cardiac muscle is striated muscle that is present only in the heart. Cardiac muscle fibers have a single nucleus, are branched, and joined to one another by intercalated discs that contain gap junctions for depolarization between cells and desmosomes to hold the fibers together when the heart contracts. Contraction in each cardiac muscle fiber is triggered by Ca ++ ions in a similar manner as skeletal muscle, but here the Ca ++ ions come from SR and through voltage-gated calcium channels in the sarcolemma. Pacemaker cells stimulate the spontaneous contraction of cardiac muscle as a functional unit, called a syncytium.

Questions & Answers

what is the name of the two subunits of L chain of a antibody structure
Arshi Reply
The pituitary gland lies in the
Aamir Reply
bony cavity,sella tursica
how does endochrondral ossification start in short bones?
Steven Reply
the chondroblast cells forms a cartilaginous bone model which becomes calcified in mid region and is innervated by perosteal capillaries. These capillaris replaces cartilages with bone tissue.
what is RH blood group
kuukyile Reply
It is a type of system for classifying blood groups according to the presence or absence of the Rh antigen.
What is the most important organ in the human body?
Gbemi Reply
the heart
or brain
the brain specifically is referred to as the control centre ..all nerve impulses are send to the brain which stimulates other specific parts of the body
please if l am Blood group B+ can l marry a lady with O- blood group?
structure of a serous membrane
Ziyanda Reply
are you asking?
In anatomy, serous membrane (or serosa) is a smooth tissue membrane consisting of two layers of mesothelium, which secrete serous fluid. The inner layer that covers organs (viscera) in body cavities is called the visceral membrane. A second layer of epithelial cells of the serous membrane, called th
The two layers of serous membranes are named parietal and visceral. Between the two layers is a thin fluid filled space.[2] The fluid is produced by the serous membranes and stays between the two layers to reduce friction between the walls of the cavities and the internal organs when they move with
a continuation from the 1st one:: A second layer of epithelial cells of the serous membrane, called the parietal layer, lines the body wall. Between the two layers is a potential space, mostly empty except for a few milliliters of lubricating serous fluid that is secreted by the two serous membranes
Lubricated secretion of skin is called sebum
what is the greater tronchanter?
the greater trochanter is  femur is a large, irregular, quadrilateral eminence and a is a part of the system of the skeleton
Thanks Jessie...
what is the easiest way to learn labels of Anatomical structures?
Name the two phases of metabolism
Grace Reply
reproduction and growth
how about anabolism and catabolism?
In Simply Anabolism means formation... Catabolism means breakdown
two phases of reproductio?
Anabolism indicates potential & catabolism potential converts to kinetic
Name the most important life process in the human body in terms of anatomy and physiology
Nervous system
Every system is important for body functions
what is the difference between the functions of the adhesion belt and the desmosomes?
Mason Reply
what are the derivatives of the germ layer?
Miriam Reply
Pls explain the atlas of the cervical vertebral column
Ifunanya Reply
why does the material not allow in mri
Simran Reply
what do you mean 'mri'
short for magnetic resonance imaging. "the researchers used MRI to record the brain activity" a medical examination performed using magnetic resonance imaging. "he's having an MRI to determine the extent of the injury" an image obtained by magnetic resonance imaging. "after looking at the MRI, the d
what is the meaning of sutures
Ibrahim Reply
i do not know
immovable joints btn two bones.eg the skull bones
Really,it's true
Sutures are immovable junction between two bones e.g those of the skull
what should I do to get or to know what to do for me to be excellent in the course of anatomy and physiology
Sandra Reply
study harder
Between the heart and the Brain which one is more important to human being... discuss
Faith Reply
well the brain is important for motor skills, the heart is important for involuntary muscle movement supporting body functions. the body can survive without brain involvement, but the body cannot last without the heart
granted the heart is important, but the brain gives the body purpose
the brain is more important
Even though the brain helps the human being to behave normally and purposefully, I think the heart is much more important cos human being cannot live without the heart
change the question
hello guys
it is difficult to select which organ is more important, now you can replace the heart with a mechanical device and the body could still function, and with technology today brain activity can also be replicated. But life would not be the same
there's coordination btn the two..so without any of them no life
the heart
The brain is important to humans.
what is homeostasis
Rebecca Reply
It is the condition when body feel comfortable
Wo feels hungry, thirty due to homeostasis
Is the maintenance of the internal environment of all the body cells for normal growth

Get the best Anatomy & Physiology course in your pocket!

Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?