<< Chapter < Page | Chapter >> Page > |
$\overline{X}$ ~ $\mathrm{N}({\mu}_{X},\frac{{\sigma}_{X}}{\sqrt{n}})\phantom{\rule{35pt}{0ex}}$ The Mean $\left(\overline{X}\right)$ : $\phantom{\rule{10pt}{0ex}}{\mu}_{X}$
Formula$z=\frac{\overline{x}-{\mu}_{X}}{\left(\frac{{\sigma}_{X}}{\sqrt{n}}\right)}\phantom{\rule{25pt}{0ex}}$ Standard Error of the Mean (Standard Deviation $\left(\overline{X}\right)$ ): $\phantom{\rule{10pt}{0ex}}\frac{{\sigma}_{X}}{\sqrt{n}}$
Formula$\mathrm{\Sigma X}$ ~ $N\left[\right(n)\cdot {\mu}_{X},\sqrt{n}\cdot {\sigma}_{X}]\phantom{\rule{10pt}{0ex}}$ Mean for Sums $\left(\mathrm{\Sigma X}\right)$ : $\phantom{\rule{10pt}{0ex}}n\cdot {\mu}_{X}$
Formula$z=\frac{\mathrm{\Sigma x}-n\cdot {\mu}_{X}}{\sqrt{n}\cdot {\sigma}_{X}}\phantom{\rule{25pt}{0ex}}$ Standard Deviation for Sums $\left(\mathrm{\Sigma X}\right)$ : $\phantom{\rule{25pt}{0ex}}\sqrt{n}\cdot {\sigma}_{X}$
Notification Switch
Would you like to follow the 'Collaborative statistics' conversation and receive update notifications?