<< Chapter < Page Chapter >> Page >

Healthcare professionals in laboratories are reluctant to release data because of cost and also because they lose some control over the data they have produced. An alternative is for clients to query databases of the pathology laboratories. A grid, federating the laboratories, would provide a secure framework enabling the screening associations to query databases and fill their local patient files (De Vlieger et al. 2009). No action is required by physicians to put their data on the network. Thanks to the grid security architecture, the cytopathologists are able to define and modify the access rights of the users querying their data.

Several projects in Europe have studied or are currently exploring the advantages of grid technology with regard to breast cancer, particularly computer-aided diagnosis of mammograms, most notably the e-Diamond (Brady et al. 2003 ) and MammoGrid (Warren et al. 2007) projects. If a sentinel network is able to federate pathology databases, it can be used by the epidemiological services of the National Institute for Health Surveillance (Institut National de Veille Sanitaire) and the regional epidemiological observatory. In the present case, it means that women could consult their own data in the pathology laboratories as well as see mammographic images stored in the radiology services through the proposed network. A cancer surveillance network is presently being implemented in the Auvergne region in France within the framework of the AuverGrid regional grid initiative (http://www.auvergrid.fr). It uses grid technology developed by EGEE, such as the AMGA metadata catalogue (Koblitz, Santos and Pose 2008) and the MDM Medical Data Manager (Montagnat et al. 2006), as well as by the Health-e-Child project, for example, the Pandora Gateway (http://www.health-e-child.org).

Case study 2 - application in radiotherapy

Radiotherapy is one of the three major treatments for cancer. It has demonstrated its efficacy in curing cancer and is also the most cost effective strategy. From a technology point of view, radiotherapy is a highly complex procedure, involving many computational operations for data gathering, processing and control. The treatment process requires large amounts of data from different sources that vary in nature (physics, mathematics, biostatistics, biology and medicine), which makes it an ideal candidate for healthgrid applications. Nowadays, in radiotherapy and brachytherapy, commercial treatment planning systems (TPS) use an analytical calculation to determine dose distributions near the tumor and organs at risk. Such codes are very fast (execution time below one minute to give the dose distribution of a treatment), which makes them suitable for use in medical centres.

For some specific treatments using very thin pencil beams (IMRT) and/or in the presence of heterogeneous tissues such as the air-tissue, lung-tissue and bonetissue interfaces, it appears that Monte Carlo simulations are the best way to compute complex cancer treatment by keeping errors in the dose calculation below 2%. The accuracy of Monte Carlo (MC) dose computation is excellent, provided that the computing power is sufficient to allow for extreme reduction of statistical noise. In order to finish MC computations within an acceptable time period for interactive use, parallel computing over very many CPUs has to be available. In this way, MC dose computations could become standard for radiotherapy quality assurance, planning and plan optimisation years before individual departments could afford local investment that is able to support MC. With the objective of making Monte Carlo dose computations the standard method for radiotherapy quality assurance, planning and plan optimisation, we are participating in the development of a Monte Carlo platform dedicated to SPECT, TEP, radiotherapy and brachytherapy simulations together with 21 other research laboratories which are involved in the international collaboration OpenGATE (http://www. opengatecollaboration.org, Jan et al. 2004). This GATE software with its accuracy and flexibility was made available to the public in 2004 and now has a community of over 1000 users worldwide.

Questions & Answers

what is Nano technology ?
Bob Reply
write examples of Nano molecule?
The nanotechnology is as new science, to scale nanometric
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Research in a connected world. OpenStax CNX. Nov 22, 2009 Download for free at http://cnx.org/content/col10677/1.12
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Research in a connected world' conversation and receive update notifications?