<< Chapter < Page Chapter >> Page >

The shaded area in the following graph indicates the area to the left of x . This area is represented by the probability P ( X < x ). Normal tables, computers, and calculators provide or calculate the probability P ( X < x ).

This is a normal distribution curve. A value, x, is labeled on the horizontal axis, X. A vertical line extends from point x to the curve, and the area under the curve to the left of x is shaded. The area of this shaded section represents the probability that a value of the variable is less than x.

The area to the right is then P ( X > x ) = 1 – P ( X < x ). Remember, P ( X < x ) = Area to the left of the vertical line through x . P ( X < x ) = 1 – P ( X < x ) = Area to the right of the vertical line through x . P ( X < x ) is the same as P ( X x ) and P ( X > x ) is the same as P ( X x ) for continuous distributions.

Calculations of probabilities

Probabilities are calculated using technology. There are instructions given as necessary for the TI-83+ and TI-84 calculators.

Note

To calculate the probability, use the probability tables provided in [link] without the use of technology. The tables include instructions for how to use them.

If the area to the left is 0.0228, then the area to the right is 1 – 0.0228 = 0.9772.

Got questions? Get instant answers now!

Try it

If the area to the left of x is 0.012, then what is the area to the right?

1 − 0.012 = 0.988

Got questions? Get instant answers now!

The final exam scores in a statistics class were normally distributed with a mean of 63 and a standard deviation of five.

a. Find the probability that a randomly selected student scored more than 65 on the exam.

a. Let X = a score on the final exam. X ~ N (63, 5), where μ = 63 and σ = 5

Draw a graph.

Then, find P ( x >65).

P ( x >65) = 0.3446

This is a normal distribution curve. The peak of the curve coincides with the point 63 on the horizontal axis. The point 65 is also labeled. A vertical line extends from point 65 to the curve. The probability area to the right of 65 is shaded; it is equal to 0.3446.

The probability that any student selected at random scores more than 65 is 0.3446.

Go into 2nd DISTR .
After pressing 2nd DISTR , press 2:normalcdf .

The syntax for the instructions are as follows:

normalcdf(lower value, upper value, mean, standard deviation) For this problem: normalcdf(65,1E99,63,5) = 0.3446. You get 1E99 (= 10 99 ) by pressing 1 , the EE key (a 2nd key) and then 99 . Or, you can enter 10^99 instead. The number 10 99 is way out in the right tail of the normal curve. We are calculating the area between 65 and 10 99 . In some instances, the lower number of the area might be –1E99 (= –10 99 ). The number –10 99 is way out in the left tail of the normal curve.

Historical note

The TI probability program calculates a z -score and then the probability from the z -score. Before technology, the z -score was looked up in a standard normal probability table (because the math involved is too cumbersome) to find the probability. In this example, a standard normal table with area to the left of the z -score was used. You calculate the z -score and look up the area to the left. The probability is the area to the right.

z = 65  – 63 5 = 0.4

Area to the left is 0.6554.

P ( x >65) = P ( z >0.4) = 1 – 0.6554 = 0.3446

Got questions? Get instant answers now!

Calculate the z -score:

*Press 2nd Distr
*Press 3:invNorm (
*Enter the area to the left of z followed by )
*Press ENTER .
For this Example, the steps are
2nd Distr
3:invNorm (.6554) ENTER
The answer is 0.3999 which rounds to 0.4.

b. Find the probability that a randomly selected student scored less than 85.

b. Draw a graph.

Then find P ( x <85), and shade the graph.

Using a computer or calculator, find P ( x <85) = 1.

normalcdf(0,85,63,5) = 1 (rounds to one)

The probability that one student scores less than 85 is approximately one (or 100%).

Got questions? Get instant answers now!

c. Find the 90 th percentile (that is, find the score k that has 90% of the scores below k and 10% of the scores above k ).

c. Find the 90 th percentile. For each problem or part of a problem, draw a new graph. Draw the x -axis. Shade the area that corresponds to the 90 th percentile.

Let k = the 90 th percentile. The variable k is located on the x -axis. P ( x < k ) is the area to the left of k . The 90 th percentile k separates the exam scores into those that are the same or lower than k and those that are the same or higher. Ninety percent of the test scores are the same or lower than k , and ten percent are the same or higher. The variable k is often called a critical value .

k = 69.4

This is a normal distribution curve. The peak of the curve coincides with the point 63 on the horizontal axis. A point, k, is labeled to the right of 63. A vertical line extends from k to the curve. The area under the curve to the left of k is shaded. This represents the probability that x is less than k: P(x < k) = 0.90

The 90 th percentile is 69.4. This means that 90% of the test scores fall at or below 69.4 and 10% fall at or above. To get this answer on the calculator, follow this step:

Got questions? Get instant answers now!

Questions & Answers

what is normal distribution
RAHAT Reply
What is the uses of sample in real life
Waqas Reply
change of origin and scale
RAHAT Reply
3. If the grades of 40000 students in a course at the Hashemite University are distributed according to N(60,400) Then the number of students with grades less than 75 =*
Ahmad Reply
If a constant value is added to every observation of data, then arithmetic mean is obtained by
Madiha Reply
sum of AM+Constnt
Fazal
data can be defined as numbers in context. suppose you are given the following set of numbers 18,22,22,20,19,21
Tyasia Reply
what are data
Tyasia Reply
what is mode?
Natasha Reply
what is statistics
Natasha
statistics is a combination of collect data summraize data analyiz data and interprete data
Ali
what is mode
Natasha
what is statistics
Alex Reply
It is the science of analysing numerical data in large quantities, especially for the purpose of inferring proportions in a whole from those in a representative sample.
Bernice
history of statistics
Terseer Reply
statistics was first used by?
Terseer
if a population has a prevalence of Hypertension 5%, what is the probability of 4 people having hypertension from 8 randomly selected individuals?
John Reply
Carpet land sales persons average 8000 per weekend sales Steve qantas the firm's vice president proposes a compensation plan with new selling incentives Steve hopes that the results of a trial selling period will enable him to conclude that the compensation plan increases the average sales per sales
lorenda Reply
Supposed we have Standard deviation 1.56, mean 6.36, sample size 25 and Z-score 1.96 at 95% confidence level, what is the confidence interval?
John Reply
if Y=a+bX and X=c+dY the show that |r|= √hd where r is regression coefficient
Vishakha Reply
this is a linear function. I presume this will be solved simultaneously?
no
Naheed
how can I get esyer statistic?
maina Reply
yes
pakistan
msc completed
i am bba students at nfc
Hamdan
stat. is the subject in bba .... exam is online . .. which fee u charge to slove my exam ?
Hamdan
which uni u completed msc?
Hamdan
no charges. i am just helping you. not for fees
really
Hamdan
yeap
i am so glad this type of people lived in pakistan💔
Hamdan
but unfortunately bba students just live for money🤣
Hamdan
no purpose of life without money🤠
Hamdan
money is not everything
sampling estimation hypothesis about question
Hamdan
ok ye tu easy topic h bhot
main tume is se related ques aur theory bejti ho
in an examination 60% passed in physics 52% passed in statistics. while 32% failed in both the subject's using relations between class frequencies in attributes find the percentage of student passed in both the subject's
Satish
general rule of addition
Hamdan
apply
Hamdan

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask