<< Chapter < Page Chapter >> Page >

The shaded area in the following graph indicates the area to the left of x . This area is represented by the probability P ( X < x ). Normal tables, computers, and calculators provide or calculate the probability P ( X < x ).

This is a normal distribution curve. A value, x, is labeled on the horizontal axis, X. A vertical line extends from point x to the curve, and the area under the curve to the left of x is shaded. The area of this shaded section represents the probability that a value of the variable is less than x.

The area to the right is then P ( X > x ) = 1 – P ( X < x ). Remember, P ( X < x ) = Area to the left of the vertical line through x . P ( X < x ) = 1 – P ( X < x ) = Area to the right of the vertical line through x . P ( X < x ) is the same as P ( X x ) and P ( X > x ) is the same as P ( X x ) for continuous distributions.

Calculations of probabilities

Probabilities are calculated using technology. There are instructions given as necessary for the TI-83+ and TI-84 calculators.

Note

To calculate the probability, use the probability tables provided in [link] without the use of technology. The tables include instructions for how to use them.

If the area to the left is 0.0228, then the area to the right is 1 – 0.0228 = 0.9772.

Got questions? Get instant answers now!

Try it

If the area to the left of x is 0.012, then what is the area to the right?

1 − 0.012 = 0.988

Got questions? Get instant answers now!

The final exam scores in a statistics class were normally distributed with a mean of 63 and a standard deviation of five.

a. Find the probability that a randomly selected student scored more than 65 on the exam.

a. Let X = a score on the final exam. X ~ N (63, 5), where μ = 63 and σ = 5

Draw a graph.

Then, find P ( x >65).

P ( x >65) = 0.3446

This is a normal distribution curve. The peak of the curve coincides with the point 63 on the horizontal axis. The point 65 is also labeled. A vertical line extends from point 65 to the curve. The probability area to the right of 65 is shaded; it is equal to 0.3446.

The probability that any student selected at random scores more than 65 is 0.3446.

Go into 2nd DISTR .
After pressing 2nd DISTR , press 2:normalcdf .

The syntax for the instructions are as follows:

normalcdf(lower value, upper value, mean, standard deviation) For this problem: normalcdf(65,1E99,63,5) = 0.3446. You get 1E99 (= 10 99 ) by pressing 1 , the EE key (a 2nd key) and then 99 . Or, you can enter 10^99 instead. The number 10 99 is way out in the right tail of the normal curve. We are calculating the area between 65 and 10 99 . In some instances, the lower number of the area might be –1E99 (= –10 99 ). The number –10 99 is way out in the left tail of the normal curve.

Historical note

The TI probability program calculates a z -score and then the probability from the z -score. Before technology, the z -score was looked up in a standard normal probability table (because the math involved is too cumbersome) to find the probability. In this example, a standard normal table with area to the left of the z -score was used. You calculate the z -score and look up the area to the left. The probability is the area to the right.

z = 65  – 63 5 = 0.4

Area to the left is 0.6554.

P ( x >65) = P ( z >0.4) = 1 – 0.6554 = 0.3446

Got questions? Get instant answers now!

Calculate the z -score:

*Press 2nd Distr
*Press 3:invNorm (
*Enter the area to the left of z followed by )
*Press ENTER .
For this Example, the steps are
2nd Distr
3:invNorm (.6554) ENTER
The answer is 0.3999 which rounds to 0.4.

b. Find the probability that a randomly selected student scored less than 85.

b. Draw a graph.

Then find P ( x <85), and shade the graph.

Using a computer or calculator, find P ( x <85) = 1.

normalcdf(0,85,63,5) = 1 (rounds to one)

The probability that one student scores less than 85 is approximately one (or 100%).

Got questions? Get instant answers now!

c. Find the 90 th percentile (that is, find the score k that has 90% of the scores below k and 10% of the scores above k ).

c. Find the 90 th percentile. For each problem or part of a problem, draw a new graph. Draw the x -axis. Shade the area that corresponds to the 90 th percentile.

Let k = the 90 th percentile. The variable k is located on the x -axis. P ( x < k ) is the area to the left of k . The 90 th percentile k separates the exam scores into those that are the same or lower than k and those that are the same or higher. Ninety percent of the test scores are the same or lower than k , and ten percent are the same or higher. The variable k is often called a critical value .

k = 69.4

This is a normal distribution curve. The peak of the curve coincides with the point 63 on the horizontal axis. A point, k, is labeled to the right of 63. A vertical line extends from k to the curve. The area under the curve to the left of k is shaded. This represents the probability that x is less than k: P(x < k) = 0.90

The 90 th percentile is 69.4. This means that 90% of the test scores fall at or below 69.4 and 10% fall at or above. To get this answer on the calculator, follow this step:

Got questions? Get instant answers now!

Questions & Answers

In order to apply weddles rule for numerical integration what is minimum number of ordinates
Anjali Reply
excuse me?
Gabriel
why?
Tade
didn't understand the question though.
Gabriel
which question? ?
Tade
We have rules of numerical integration like Trapezoidal rule, Simpson's 1/3 and 3/8 rules, Boole's rule and Weddle rule for n =1,2,3,4 and 6 but for n=5?
John
geometric mean of two numbers 4 and 16 is:
iphone Reply
10
umair
really
iphone
quartile deviation of 8 8 8 is:
iphone
sorry 8 is the geometric mean of 4,16
umair
quartile deviation of 8 8 8 is
iphone
can you please expalin the whole question ?
umair
mcq
iphone
h
iphone
can you please post the picture of that ?
umair
how
iphone
hello
John
10 now
John
how to find out the value
srijth Reply
can you be more specific ?
umair
yes
KrishnaReddy
what is the difference between inferential and descriptive statistics
Eze Reply
descriptive statistics gives you the result on the the data like you can calculate various things like variance,mean,median etc. however, inferential stats is involved in prediction of future trends using the previous stored data.
umair
if you need more help i am up for the help.
umair
Thanks a lot
Anjali
Inferential Statistics involves drawing conclusions on a population based on analysis of a sample. Descriptive statistics summarises or describes your current data as numerical calculations or graphs.
fred
my pleasure😊. Helping others offers me satisfaction 😊
umair
for poisson distribution mean............variance.
mehul Reply
both are equal to mu
Faizan
mean=variance
Faizan
what is a variable
Bonolo Reply
something that changes
Festus
why we only calculate 4 moment of mean? asked in papers.
Faizan Reply
why we only 4 moment of mean ? asked in BA exam
Faizan
Good evening, can you please help me by sharing regression and correlation analysis notes....thank you in advance
Refiloe Reply
Hello, can you please share the possible questions that are likely to be examined under the topic: regression and correlation analysis.
Refiloe
for normal distribution mean is 2 & variance is 4 find mu 4?
Faizan Reply
repeat quastion again
Yusuf
find mu 4. it can be wrong but want to prove how.
Faizan
for a normal distribution if mu 4 is 12 then find mu 3?
Faizan Reply
Question hi wrong ha
Tahir
ye BA mcqs me aya he teen he. 2dafa aya he
Faizan
if X is normally distributed. (n,b). then its mean deviation is?
Faizan
The answer is zero, because all odd ordered central moments of a normal distribution are Zero.
nikita
which question is zero
Faizan
sorry it is (5,16) in place of (n,b)
Faizan
I got. thanks. it is zero.
Faizan
How did we get the 24000
patrick Reply
where do I start
Jeremy Reply
in a large restaurant an average of every 7 customers ask for water with the their meal. A random sample of 12 customers is selected, find the probability that exactly 6 ask for water with their meal
Rufai Reply
any body with idea
Rufai
conditional probability
Ramesh
can you help please
Rufai
iam really sorry. it's been long since I used these things. I just gave you a hint though
Ramesh
ok
Rufai
this follows binomial distribution. p(X=6)=12C6*(0.6)^6*0.4^6 use this formula n find.
syeda
can you explain the cosidered variable in the formula
Divya
x is variable wich is exactly 6 costumers
syeda
n is number of customers
syeda
ncx*p^X*q^X?
Divya
q^n-x
syeda
oh right !!! thanks yaar
Divya
I agree with Seyda too
Hoshyar
I agree with Syeda too
Hoshyar
7/12 =0.58is it?
yousaf
.
yousaf
r8
khalid
what is descriptive statistic
Shadow Reply
Descriptive statistics are brief descriptive coefficients that summarize a given data set, which can be either a representation of the entire or a sample of a population. Descriptive statistics are broken down into measures of central tendency and measures of variability (spread). 
Divya
are you getting this ?
Divya
if so let me know
Divya
yes m getting
Ramesh
fine
Divya
what's taking place can l join u
Anest
yeah !!why not? sure
Divya
okey thanks
Anest
where are statistics used
akinola Reply
hello
Giannis
Hi
Makhosi
how u doing
Muhid
everywhere
Faizan

Get the best Introductory statistics course in your pocket!





Source:  OpenStax, Introductory statistics. OpenStax CNX. May 06, 2016 Download for free at http://legacy.cnx.org/content/col11562/1.18
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Introductory statistics' conversation and receive update notifications?

Ask