# 10.5 Angular momentum and its conservation  (Page 2/7)

 Page 2 / 7

## Calculating the torque in a kick

The person whose leg is shown in [link] kicks his leg by exerting a 2000-N force with his upper leg muscle. The effective perpendicular lever arm is 2.20 cm. Given the moment of inertia of the lower leg is $1.25 kg\cdot {\text{m}}^{2}$ , (a) find the angular acceleration of the leg. (b) Neglecting the gravitational force, what is the rotational kinetic energy of the leg after it has rotated through $\text{57}\text{.}3º$ (1.00 rad)?

Strategy

The angular acceleration can be found using the rotational analog to Newton’s second law, or $\alpha =\text{net}\phantom{\rule{0.25em}{0ex}}\tau /I$ . The moment of inertia $I$ is given and the torque can be found easily from the given force and perpendicular lever arm. Once the angular acceleration $\alpha$ is known, the final angular velocity and rotational kinetic energy can be calculated.

Solution to (a)

From the rotational analog to Newton’s second law, the angular acceleration $\alpha$ is

$\alpha =\frac{\text{net}\phantom{\rule{0.25em}{0ex}}\tau }{I}.$

Because the force and the perpendicular lever arm are given and the leg is vertical so that its weight does not create a torque, the net torque is thus

$\begin{array}{lll}\text{net}\phantom{\rule{0.25em}{0ex}}\tau & =& {r}_{\perp }F\\ & =& \left(0\text{.}\text{0220 m}\right)\left(\text{2000}\phantom{\rule{0.25em}{0ex}}\text{N}\right)\\ & =& \text{44}\text{.}\text{0 N}\cdot \text{m.}\end{array}$

Substituting this value for the torque and the given value for the moment of inertia into the expression for $\alpha$ gives

$\alpha =\frac{\text{44}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{N}\cdot \text{m}}{1\text{.}\text{25}\phantom{\rule{0.25em}{0ex}}\text{kg}\cdot {\text{m}}^{2}}=\text{35}\text{.}2\phantom{\rule{0.25em}{0ex}}{\text{rad/s}}^{2}.$

Solution to (b)

The final angular velocity can be calculated from the kinematic expression

${\omega }^{2}={{\omega }_{0}}^{2}+2\text{αθ}$

or

${\omega }^{2}=2\text{αθ}$

because the initial angular velocity is zero. The kinetic energy of rotation is

${\text{KE}}_{\text{rot}}=\frac{1}{2}{\mathrm{I\omega }}^{2}$

so it is most convenient to use the value of ${\omega }^{2}$ just found and the given value for the moment of inertia. The kinetic energy is then

$\begin{array}{lll}{\text{KE}}_{\text{rot}}& =& 0.5\left(1\text{.25}\phantom{\rule{0.25em}{0ex}}\text{kg}\cdot {\text{m}}^{2}\right)\left(\text{70.}4\phantom{\rule{0.25em}{0ex}}{\text{rad}}^{2}/{\text{s}}^{2}\right)\\ & =& \text{44}\text{.}0\phantom{\rule{0.25em}{0ex}}\text{J}\end{array}.$

Discussion

These values are reasonable for a person kicking his leg starting from the position shown. The weight of the leg can be neglected in part (a) because it exerts no torque when the center of gravity of the lower leg is directly beneath the pivot in the knee. In part (b), the force exerted by the upper leg is so large that its torque is much greater than that created by the weight of the lower leg as it rotates. The rotational kinetic energy given to the lower leg is enough that it could give a ball a significant velocity by transferring some of this energy in a kick.

## Making connections: conservation laws

Angular momentum, like energy and linear momentum, is conserved. This universally applicable law is another sign of underlying unity in physical laws. Angular momentum is conserved when net external torque is zero, just as linear momentum is conserved when the net external force is zero.

## Conservation of angular momentum

We can now understand why Earth keeps on spinning. As we saw in the previous example, $\text{Δ}L=\left(\text{net}\phantom{\rule{0.25em}{0ex}}\tau \right)\text{Δ}t$ . This equation means that, to change angular momentum, a torque must act over some period of time. Because Earth has a large angular momentum, a large torque acting over a long time is needed to change its rate of spin. So what external torques are there? Tidal friction exerts torque that is slowing Earth’s rotation, but tens of millions of years must pass before the change is very significant. Recent research indicates the length of the day was 18 h some 900 million years ago. Only the tides exert significant retarding torques on Earth, and so it will continue to spin, although ever more slowly, for many billions of years.

how lesers can transmit information
griffts bridge derivative
below me
please explain; when a glass rod is rubbed with silk, it becomes positive and the silk becomes negative- yet both attracts dust. does dust have third types of charge that is attracted to both positive and negative
what is a conductor
Timothy
hello
Timothy
below me
why below you
Timothy
no....I said below me ...... nothing below .....ok?
dust particles contains both positive and negative charge particles
Mbutene
corona charge can verify
Stephen
when pressure increases the temperature remain what?
what is frequency
define precision briefly
CT scanners do not detect details smaller than about 0.5 mm. Is this limitation due to the wavelength of x rays? Explain.
hope this helps
what's critical angle
The Critical Angle Derivation So the critical angle is defined as the angle of incidence that provides an angle of refraction of 90-degrees. Make particular note that the critical angle is an angle of incidence value. For the water-air boundary, the critical angle is 48.6-degrees.
okay whatever
Chidalu
pls who can give the definition of relative density?
Temiloluwa
the ratio of the density of a substance to the density of a standard, usually water for a liquid or solid, and air for a gas.
Chidalu
What is momentum
mass ×velocity
Chidalu
it is the product of mass ×velocity of an object
Chidalu
how do I highlight a sentence]p? I select the sentence but get options like copy or web search but no highlight. tks. src
then you can edit your work anyway you want
Wat is the relationship between Instataneous velocity
Instantaneous velocity is defined as the rate of change of position for a time interval which is almost equal to zero
Astronomy
The potential in a region between x= 0 and x = 6.00 m lis V= a+ bx, where a = 10.0 V and b = -7.00 V/m. Determine (a) the potential atx=0, 3.00 m, and 6.00 m and (b) the magnitude and direction of the electric ficld at x =0, 3.00 m, and 6.00 m.
what is energy
hi all?
GIDEON
hey
Bitrus
energy is when you finally get up of your lazy azz and do some real work 😁
what is physics
what are the basic of physics
faith
base itself is physics
Vishlawath
tree physical properties of heat
tree is a type of organism that grows very tall and have a wood trunk and branches with leaves... how is that related to heat? what did you smoke man?
algum profe sabe .. Progressivo ou Retrógrado e Acelerado ou Retardado   V= +23 m/s        V= +5 m/s        0__>              0__> __________________________>        T= 0               T=6s
Claudia