<< Chapter < Page Chapter >> Page >

Vậy ta đã chứng minh xong L(G3) = L1  L2, hay L1  L2 là CFL.

. Đối với L1L2 : Xây dựng văn phạm G4 (V1  V2  {S4}, T1  T2, P4, S4) ,

trong đó P4 = P1  P2  {S4  S1S2}.

Chứng minh tương tự như trên ta có L(G4) = L1L2, vậy L1L2 cũng là CFL.

. Đối với L1* : Xây dựng văn phạm G5 (V1  {S5}, T1, P5, S5),

trong đó P5 = P1  { S5  S1S5 | }.

Ta cũng dễ dàng chứng minh được L(G5) = (L(G1))*.

ĐỊNH LÝ 5.8 : CFL không đóng với phép giao

Chứng minh

Ta đã biết ngôn ngữ L1 = {aibici | i  1} không là CFL. Ta có thể chứng minh :

. L2 = {aibicj | i  1 và j  1} là CFL vì L2 được sinh bởi văn phạm :

S ® AB

A ® aAb | ab

B ® cB | c

. L3 = {aibjcj | i  1 và j  1} cũng là CFL vì L3 được sinh từ văn phạm :

S ® CD

C ® aC | a

D ® bDc | bc

Tuy nhiên L2  L3 = L1 không phải là CFL.

Vậy CFL không đóng với phép giao.

Hệ quả: CFL không đóng với phép lấy phần bù.

Chứng minh

Giả sử CFL đóng với phép lấy phần bù, vậy với L1, L2 là hai CFL bất kỳ, theo quy luật DeMorgan ta có L 1 size 12{L rSub { size 8{1} } } {} L 2 size 12{L rSub { size 8{2} } } {} = L 1 ¯ L 2 ¯ ¯ size 12{ {overline { matrix { {overline {L rSub { size 8{1} } }} {} # union {overline {L rSub { size 8{2} } }} {}} }} } {} nên L1  L2 là CFL hay CFL cũng đóng với phép giao. ( Điều này mâu thuẫn với định lý 6.6)

Câu hỏi :

?

Hãy so sánh các tính chất đóng của lớp ngôn ngữ phi ngữ cảnh với lớp ngôn ngữ chính quy ?

Các giải thuật quyết định cfl

Có một vài câu hỏi về CFL mà chúng ta cần phải trả lời. Chẳng hạn, liệu một ngôn ngữ phi ngữ cảnh cho trước là rỗng, hữu hạn hay vô hạn hay một chuỗi nào đó liệu có thuộc ngôn ngữ này không ? Tuy nhiên, cũng có những câu hỏi về CFL mà không có giải thuật nào để có thể trả lời. Chẳng hạn, liệu hai CFG thì có tương đương nhau, hay phần bù của một CFL có là CFL hay không, hoặc một CFG cho trước nào đó có phải là văn phạm mơ hồ ? Trong phần này, chúng ta chỉ đưa ra giải thuật cho một số các câu hỏi có thể trả lời.

Giải thuật xác định ngôn ngữ phi ngữ cảnh

ĐỊNH LÝ 5.9 : Tồn tại giải thuật để xác định CFL là: rỗng, hữu hạn, vô hạn.

Chứng minh

Với văn phạm G (V, T, P, S) :

. Để kiểm tra L(G) có rỗng hay không, ta dùng bổ đề 5. 1: Rõ ràng L(G) không rỗng khi và chỉ khi S sinh ra một chuỗi ký hiệu kết thúc nào đó.

. Để kiểm tra L(G) hữu hạn hay vô hạn, ta dùng định lý 5. 5 để tìm văn phạm tương đương G’ (V’, T, P’, S) có dạng chuẩn CHOMSKY và không có ký hiệu vô ích sinh ra L(G) - {}. L(G) hữu hạn khi và chỉ khi L(G’) hữu hạn.

Để kiểm tra tính hữu hạn của CFG có dạng chuẩn CHOMSKY, ta chỉ cần vẽ đồ thị có hướng với mỗi đỉnh trên đồ thị là một biến thuộc văn phạm và cạnh từ A đến B nếu và chỉ nếu có luật sinh A  BC hoặc A  CB với biến C bất kỳ. Khi đó, ngôn ngữ sinh ra là hữu hạn nếu và chỉ nếu đồ thị không có chu trình. Vì :

Nếu đồ thị có chu trình, giả sử chu trình là A0, A1,... , An, A0 thì sẽ có chuỗi dẫn xuất: A0  1A11  2A22 ...  nAnn  n+1 A0n+1, trong đó i, i là chuỗi các biến và | ii | = i. Vì không có ký hiệu vô ích nên n+1* w và n+1* x với mọi chuỗi w, x là các chuỗi ký hiệu kết thúc và độ dài tổng cộng ít nhất bằng n+1. Vì n  0, nên w và x không thể đồng thời bằng .

Kế tiếp, cũng do văn phạm không có chứa ký hiệu vô ích nên ta có thể tìm được các chuỗi y, z sao cho S * yA0z và chuỗi ký hiệu kết thúc v sao cho A0 * v. Vậy i ta có :

Questions & Answers

how can chip be made from sand
Eke Reply
is this allso about nanoscale material
Almas
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where is the latest information on a no technology how can I find it
William
currently
William
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Giáo trình tin học lý thuyết. OpenStax CNX. Jul 30, 2009 Download for free at http://cnx.org/content/col10826/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Giáo trình tin học lý thuyết' conversation and receive update notifications?

Ask