<< Chapter < Page Chapter >> Page >

Big - omega and big - theta

Big-oh concerns with the "less than or equal to" relation between functions for large values of the variable. It is also possible to consider the "greater than or equal to" relation and "equal to" relation in a similar way. Big-Omega is for the former and big-theta is for the latter.

Definition (big-omega): Let f and g be functions from the set of integers (or the set of real numbers) to the set of real numbers. Then f(x) is said to be Ω(g(x)) , which is read as f(x) is big-omega of g(x) , if there are constants C and n0 such that

     | f(x) | ≥C | g(x) |

whenever x>n0 .

Definition (big-theta): Let f and g be functions from the set of integers (or the set of real numbers) to the set of real numbers. Then f(x) is said to be θ( g(x) ) , which is read as f(x) is big-theta of g(x) , if f(x) is O( g(x) ), and Ω( g(x) ) . We also say that f(x) is of order g(x) .

For example,   3x2 - 3x - 5  is Ω( x2 ) , because   3x2 - 3x - 5 ≥x2   for integers x>2   (C = 1 , n0 = 2 ) .

Hence by Theorem 1 it is θ( x2) .

In general, we have the following theorem:

Theorem 4: an xn + ... + a1 x + a0   is   θ( xn )   for any real numbers an , ..., a0 and any nonnegative number n .

Little - oh and little - omega

If f(x) is O( g(x) ), but not θ( g(x) ) , then f(x) is said to be o( g(x) ) , and it is read as f(x) is little-oh of g(x) . Similarly for little-omega (ω).

For example   x is   o(x2 ) ,   x2 is   o(2x ) ,   2x is   o(x ! ) , etc.

Calculation of big – oh

Basic knowledge of limits and derivatives of functions from calculus is necessary here. Big-oh relationships between functions can be tested using limit of function as follows:

Let f(x) and g(x) be functions from a set of real numbers to a set of real numbers.

Then

1.     If   lim x f ( x ) / g ( x ) = 0 size 12{ {"lim"} cSub { size 8{x rightarrow infinity } } f \( x \) /g \( x \) =0} {} , then  f(x) is o( g(x) ) . Note that if  f(x) is o( g(x) ), then f(x) is O( g(x) ).

2.     If  lim x f ( x ) / g ( x ) = size 12{ {"lim"} cSub { size 8{x rightarrow infinity } } f \( x \) /g \( x \) = infinity } {} , then   g(x) is o( f(x) ) .

3.     If   0 < lim x f ( x ) / g ( x ) < size 12{0<{"lim"} cSub { size 8{x rightarrow infinity } } f \( x \) /g \( x \)<infinity } {} , then   f(x) is θ( g(x) ) .

4.     If   lim x f ( x ) / g ( x ) < size 12{ {"lim"} cSub { size 8{x rightarrow infinity } } f \( x \) /g \( x \)<infinity } {} , then   f(x) is O( g(x) ) .

For example,

lim x size 12{ {"lim"} cSub { size 8{x rightarrow infinity } } } {} (4x3 + 3x2 + 5)/(x4 – 3x3 – 5x -4) 

= lim x size 12{ {"lim"} cSub { size 8{x rightarrow infinity } } } {} ( 4/x + 3/x2 + 5/x4 )/(1 - 3/x - 5/x3 - 4/x4 ) = 0 .

Hence

( 4x3 + 3x2 + 5 )   is   o(x4 - 3x3 - 5x - 4 ),  

or equivalently,   (x4 - 3x3 - 5x - 4 ) is   ω(4x3 + 3x2 + 5 ) .

Let us see why these rules hold. Here we give a proof for 4. Others can be proven similarly.

Proof: Suppose   lim x f ( x ) / g ( x ) = C 1 < size 12{ {"lim"} cSub { size 8{x rightarrow infinity } } f \( x \) /g \( x \) =C rSub { size 8{1} }<infinity } {} .

By the definition of limit this means that

∀ε>0, ∃n0 such that   |f(x)/g(x) – C1|<ε whenever x>n0

Hence –ε<f(x)/g(x) – C1<ε

Hence –ε +C1<f(x)/g(x)<ε +C1

In particular f(x)/g(x)<ε +C1

Hence f(x)<(ε +C1)g(x)

Let C = ε +C1 , then f(x)<Cg(x) whenever x>n0 .

Since we are interested in non-negative functions f and g, this means that   |f(x) | ≤C | g(x) |

Hence   f(x) = O( g(x) ) .

L'hospital (l'hôpital)'s rule

lim x size 12{ {"lim"} cSub { size 8{x rightarrow infinity } } } {} f(x)/g(x) is not always easy to calculate. For example take lim x size 12{ {"lim"} cSub { size 8{x rightarrow infinity } } } {} x2/3x. Since both x2 and 3x go to ∞ as x goes to ∞ and there is no apparent factor common to both, the calculation of the limit is not immediate. One tool we may be able to use in such cases is L'Hospital's Rule, which is given as a theorem below.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Discrete structures. OpenStax CNX. Jan 23, 2008 Download for free at http://cnx.org/content/col10513/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Discrete structures' conversation and receive update notifications?

Ask