# 5.3 Pitch detection algorithms

 Page 1 / 2
Two algorithms to detect the fundamental frequency of a signal: one in the time domain (Autocorrelation) and one in the frequency domain (Harmonic Product Spectrum / HPS)

## Theory

Fundamentally, this algorithm exploits the fact that a periodic signal, even if it is not a pure sine wave, will be similar from one period to the next. This is true even if the amplitude of the signal is changing in time, provided those changes do not occur too quickly.

To detect the pitch, we take a window of the signal, with a length at least twice as long as the longest period that we might detect. In our case, this corresponded to a length of 1200 samples, given a sampling rate of 44,100 KHz.

Using this section of signal, we generate the autocorrelation function r(s) defined as the sum of the pointwise absolute difference between the two signals over some interval, perhaps 600 points.

Graphically, this corresponds to the following:

Intuitively, it should make sense that as the shift value s begins to reach the fundamental period of the signal T, the difference between the shifted signal and the original signal will begin to decrease. Indeed, we can see this in the plot below, in which the autocorrelation function rapidly approaches zero at the fundamental period.

We can detect this value by differentiating the autocorrelation function and then looking for a change of sign, which yields critical points. We then look at the direction of the sign change across points (positive difference to negative), to take only the minima. We then search for the first minimum below some threshold, i.e. the minimum corresponding to the smallest s. The location of this minimum gives us the fundamental period of the windowed portion of signal, from which we can easily determine the frequency using

## Fast-autocorrelation

Clearly, this algorithm requires a great deal of computation. First, we generate the autocorrelation function r(s) for some positive range of s. For each value of s, we need to compute the total difference between the shifted signals. Next, we need to differentiate this signal and search for the minimum, finally determining the correct minimum. We must do this for each window.

In generating the r(s) function, we define a domain for s of 0 to 599. This allows for fundamental frequencies between about 50 and 22000 Hz, which works nicely for human voice. However, this does require calculating r(s) 600 times for each window.

#### Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!