<< Chapter < Page Chapter >> Page >

Mathematics

Perimeter, area and volume

Educator section

Memorandum

23.4

a) 108 cubic cm

b) 72 cubic cm

c) 23,625 cubic cm

d) 108 cubic cm

23.5

a) 20 cubic cm

b) 63 000 cubic mm

c) 24 000 cubic cm

d) 1 728 cubic cm

e) own answer

Leaner section

Content

Activity: volume [lo 4.2, lo 4.3]

23. VOLUME

23.1 Did you know?

The amount of space that is taken up by a solid body is called the volume of the body.

The internal volume is thus the space inside a hollow container. It is also called the capacity or contents of the container.

23.2 IMPORTANT to REMEMBER!

Volume is measured in cubic measuring units

We use the following units:

cubic mm : mm³

cubic cm : cm³

cubic m : m³

1 cm³ (cubic centimetre) is a cube with a length, breadth and height of 1 cm.

1 cm³ = 1 cm x 1 cm x 1 cm

= 10 mm x 10 mm x 10 mm

= 1 000 mm3

1 m³ = 1 m x 1 m x 1 m

= 100 cm x 100 cm x 100 cm

= 1 000 000 cm³

23.3 Also LEARN the following:

Volume of a rectangular prism is length x breadth x height

Volume of a cube is y³ y = (length, breadth and height)

23.4 Use the formula: volume = length x breadth x height

to calculate the volume of the following figures:

a)

___________________________________________________

___________________________________________________

___________________________________________________

b)

___________________________________________________

___________________________________________________

___________________________________________________

c)

___________________________________________________

___________________________________________________

___________________________________________________

d)

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

23.5 a) Calculate the volume of the following in cm3:

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

b) Calculate the volume of the following in mm3

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

c) What is the volume of the figure in cm3?

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

d) Calculate the volume of a cube with a length of 12 cm.

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

e) Estimate the volume of the box of chalk in your classroom

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

23.6 CLASS DISCUSSION

How will you determine the volume of an irregular figure, e.g. a stone?

23.6.1 Did you know?

A Greek Mathematician, Archimedes, discovered how to calculate the volume of an irregular figure while he was bathing! He saw how water flowed over the edge of the bath when he climbed in. He realised that if he could measure the volume of water that his body displaced, then he could measure the volume of his own body. Archimedes was so excited by this realisation that he jumped out of the bath and ran down the street stark naked shouting, “EUREKA!” (I have found it!)

23.6.2 Follow the following steps and see if you can measure the volume of a stone that you have picked up outside.

a) Fill a cup completely to the top with water and put the cup in a bigger container. Remember to see precisely how many mℓ water you have in the cup!

b) Slowly lower the stone into the cup. Make certain that the water that overflows lands in the bigger container.

c) Measure the amount of water in the container by pouring it into a measuring cup.

d) Your stone has a volume of 1 cm3 for each mℓ of water that overflowed because 1 mℓ = 1 cm³.

e) What is the volume of your stone? .__________________________________

Assessment

Learning Outcome 4: The learner will be able to use appropriate measuring units, instruments and formulae in a variety of contexts.

Assessment Standard 4.2: We know this when the learner solves problems;

Assessment Standard 4.3: We know this when the learner solves problems using a range of strategies.

Questions & Answers

how can chip be made from sand
Eke Reply
are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mathematics grade 7. OpenStax CNX. Sep 16, 2009 Download for free at http://cnx.org/content/col11075/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mathematics grade 7' conversation and receive update notifications?

Ask