# 4.7 Volume

 Page 1 / 1

## Memorandum

23.4

a) 108 cubic cm

b) 72 cubic cm

c) 23,625 cubic cm

d) 108 cubic cm

23.5

a) 20 cubic cm

b) 63 000 cubic mm

c) 24 000 cubic cm

d) 1 728 cubic cm

## Activity: volume [lo 4.2, lo 4.3]

23. VOLUME

23.1 Did you know?

The amount of space that is taken up by a solid body is called the volume of the body.

The internal volume is thus the space inside a hollow container. It is also called the capacity or contents of the container.

23.2 IMPORTANT to REMEMBER!

Volume is measured in cubic measuring units

We use the following units:

cubic mm : mm³

cubic cm : cm³

cubic m : m³

1 cm³ (cubic centimetre) is a cube with a length, breadth and height of 1 cm.

1 cm³ = 1 cm x 1 cm x 1 cm

= 10 mm x 10 mm x 10 mm

= 1 000 mm3

1 m³ = 1 m x 1 m x 1 m

= 100 cm x 100 cm x 100 cm

= 1 000 000 cm³

23.3 Also LEARN the following:

Volume of a rectangular prism is length x breadth x height

Volume of a cube is y³ y = (length, breadth and height)

23.4 Use the formula: volume = length x breadth x height

to calculate the volume of the following figures:

a)

___________________________________________________

___________________________________________________

___________________________________________________

b)

___________________________________________________

___________________________________________________

___________________________________________________

c)

___________________________________________________

___________________________________________________

___________________________________________________

d)

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

23.5 a) Calculate the volume of the following in cm3:

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

b) Calculate the volume of the following in mm3

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

c) What is the volume of the figure in cm3?

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

d) Calculate the volume of a cube with a length of 12 cm.

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

e) Estimate the volume of the box of chalk in your classroom

___________________________________________________

___________________________________________________

___________________________________________________

___________________________________________________

23.6 CLASS DISCUSSION

How will you determine the volume of an irregular figure, e.g. a stone?

23.6.1 Did you know?

A Greek Mathematician, Archimedes, discovered how to calculate the volume of an irregular figure while he was bathing! He saw how water flowed over the edge of the bath when he climbed in. He realised that if he could measure the volume of water that his body displaced, then he could measure the volume of his own body. Archimedes was so excited by this realisation that he jumped out of the bath and ran down the street stark naked shouting, “EUREKA!” (I have found it!)

23.6.2 Follow the following steps and see if you can measure the volume of a stone that you have picked up outside.

a) Fill a cup completely to the top with water and put the cup in a bigger container. Remember to see precisely how many mℓ water you have in the cup!

b) Slowly lower the stone into the cup. Make certain that the water that overflows lands in the bigger container.

c) Measure the amount of water in the container by pouring it into a measuring cup.

d) Your stone has a volume of 1 cm3 for each mℓ of water that overflowed because 1 mℓ = 1 cm³.

e) What is the volume of your stone? .__________________________________

## Assessment

Learning Outcome 4: The learner will be able to use appropriate measuring units, instruments and formulae in a variety of contexts.

Assessment Standard 4.2: We know this when the learner solves problems;

Assessment Standard 4.3: We know this when the learner solves problems using a range of strategies.

what is Nano technology ?
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
why we need to study biomolecules, molecular biology in nanotechnology?
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
why?
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
Got questions? Join the online conversation and get instant answers!