<< Chapter < Page Chapter >> Page >

The height is often a line drawn inside the triangle. This is the case in four of the six triangles above. But if the triangle is right-angled, the height can be one of the sides . This can be seen in the fourth triangle. In the sixth triangle you can see that the height line needs to be drawn outside the triangle.

Summary:

In summary, if you want to use the area formula you need to have a base and a height that make a pair, and you must have (or be able to calculate) their lengths. In some of the following problems, you will have to calculate the area of a triangle on the way to an answer.

Here is a reminder of the Theorem of Pythagoras; it applies only to right-angled triangles, but you will encounter many of those from now on.

I

In a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides.

If you are a bit vague about applying the theorem, go back to the work you did on it before and refresh your memory.

  • Using the formula, calculate the area of Δ ABC where A = 90°, BC = 10 cm and AC = 8 cm. A reasonably accurate sketch will be helpful. This is a two-step problem: first use Pythagoras and then the area formula.
  • When calculating the area of quadrilaterals, the same principle applies as with triangles: when we refer to height it is always with reference to a specific base .
  • We can use the formula for a triangle’s area to develop some formulae for our six quadrilaterals.
  • A square consists of two identical triangles, as in the sketch. Let us call the length of the square’s side s . Then the area ( A ) of the square is:

A = 2 × area of 1 triangle = 2 (½ × base × height) = 2 × ½ × s × s = s 2 = side squared.

You probably knew this already!

  • It works the same for the rectangle: The rectangle is b broad and l long, and its area ( A ) is:

A = first triangle + second triangle

= (½ × base × height) + (½ × base × height)

= (½ × b × size 12{ℓ} {} ) + (½ × size 12{ℓ} {} × b) = ½ b size 12{ℓ} {} + ½ b size 12{ℓ} {} = b size 12{ℓ} {}

= breadth times length.

You probably knew this already!

  • The parallelogram is a little harder, but the sketch should help you understand it. If we divide it into two triangles, then we could give them the same size base (the long side of the parallelogram in each case). If we call this line the base of the parallelogram, we can use the letter b . You will see that the heights ( h ) of the two triangles are also drawn (remember a height must be perpendicular to a base).
  • Can you convince yourself (maybe by measuring) that the two heights are identical? And what about the two bases? The area is: A = triangle + triangle = ½ bh + ½ bh = bh = base times height.
  • A challenge for you: Do the same for the rhombus. (Answer: A = bh , like the parallelogram).
    Let’s see what we can do to find a formula for the trapezium. It is different from the parallelogram, as its two parallel sides are NOT the same length.
  • Let us call them P s 1 and P s 2 . Again, the two heights are identical.
  • Then from the two triangles in the sketch we can write down the area:

A = triangle 1 + triangle 2 = ½ × P s 1 × h + ½ × P s 2 × h

= ½ h ( P s 1 + P s 2 ) = half height times sum of parallel sides.

(Did you notice the factorising?)

  • Finally, we come to the kite, which has one long diagonal (which is the symmetry line) and one short diagonal, which we can call sl (symmetry line) and sd (short diagonal).
  • The kite can be divided into two identical triangles along the symmetry line. Because a kite has perpendicular diagonals, we know that we can apply the formula for the area of a triangle easily.
  • This means that the height of the triangles is exactly half of the short diagonal. h = ½ × sd . Look out in the algebra below where we change h to ½ sd ! Both sorts of kite work the same way, and give the same formula.
  • Refer to the sketches.

Area = 2 identical triangles

= 2( ½ × sl × h ) = 2 × ½ × sl × ½ × sd

= sl × ½ × sd = ½ × sl × sd

= half long diagonal times short diagonal.

In the following exercise the questions start easy but become harder – you have to remember Pythagoras’ theorem when you work with right angles.

Calculate the areas of the following quadrilaterals:

1 A square with side length 13 cm

2 A square with a diagonal of 13 cm (first use Pythagoras)

3 A rectangle with length 5 cm and width 6,5 cm

4 A rectangle with length 12 cm and diagonal 13 cm (Pythagoras)

5 A parallelogram with height 4 cm and base length 9 cm

6 A parallelogram with height 2,3 cm and base length 7,2 cm

7 A rhombus with sides 5 cm and height 3,5 cm

8 A rhombus with diagonals 11 cm and 12 cm

(What fact do you know about the diagonals of a rhombus?)

9 A trapezium with the two parallel sides 18 cm and 23 cm that are 7,5 cm apart

10 A kite with diagonals 25 cm and 17 cm

Assessment

LO 3
Space and Shape (Geometry)The learner will be able to describe and represent cha­racteristics and relationships between two-dimensional shapes and three–dimensional objects in a variety of orientations and positions.
We know this when the learner:
3.2 in contexts that include those that may be used to build awareness of social, cultural and environmental issues, describes the interrelationships of the properties of geometric figures and solids with justification, including:
3.2.2 transformations.
3.3 uses geometry of straight lines and triangles to solve problems and to justify relationships in geometric figures;
3.4 draws and/or constructs geometric figures and makes models of solids in order to investigate and compare their properties and model situations in the environment.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Mathematics grade 9. OpenStax CNX. Sep 14, 2009 Download for free at http://cnx.org/content/col11056/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mathematics grade 9' conversation and receive update notifications?

Ask