<< Chapter < Page Chapter >> Page >

a)

Ek herlei eers die desimale breuke na gewone breuke:

0,8 × 0,6 = 8 10 × 6 10 48 100 alignl { stack { size 12{0,8 times 0,6= { { size 8{8} } over { size 8{"10"} } } times { { size 8{6} } over { size 8{"10"} } } } {} #= { { size 8{"48"} } over { size 8{"100"} } } {} } } {}

Hy stap dus 0,48 km.

b) Ek werk eers 8 × 6 uit. Die antwoord is 48. Nou tel ek die aantal plekke na elke desimale komma. Daar is 2. My antwoord moet dus 2 (twee) syfers na die desimale komma hê.

Die antwoord is dus 0,48.

20.6.2 Wat merk julle op as julle die antwoord (produk) met die vermenigvuldigtal vergelyk?

…………………………………………………………………………………………..

…………………………………………………………………………………………..

Kan julle dit verklaar?

…………………………………………………………………………………………..

…………………………………………………………………………………………..

20.7 ONTHOU!

20.8 Bereken die volgende op jou eie sonder ’n sakrekenaar:

a) j = 0,146 x 3,4

b) v = 2,41 x 0,57

c) u = 0,025 x 4,36

d) g = 8,143 x 0,68

e) d = 7,293 x 5,29

f) o = 3,849 x 4,36

21. Tyd vir selfassessering

  • Merk die toepaslike blokkie met ’n :
ONSEKER SEKER
Ek kan desimale breuke korrek optel
Ek kan desimale breuke korrek van mekaar aftrek
Ek kan desimale breuke korrek met 10 vermenigvuldig
Ek weet hoe om desimale breuke met 100 te vermenigvuldig
Ek kan die produk van desimale breuke en 1 000 korrek bereken
Ek kan desimale breuke met heelgetalle vermenigvuldig
Ek kan desimale breuke met desimale breuke vermenigvuldig

22. Kom ons speel ’n speletjie

Jy het ’n maat en ’n sakrekenaar vir hierdie speletjie nodig. Sleutel enige desimale getal op jou sakrekenaar in. Deel dit dan deur 10, 100 of 1 000. Gee dan die sakrekenaar vir jou maat. Hy / sy moet weer die oorspronklike getal kry.

Bv. Speler 1 sleutel in: 43,674Speler 1 deel 43,674 deur 1 000 en kry 0,043674.Speler 2 moet nou weer 43,674 op die skerm kry.Speler 2 moet dus × met 1 000!

23. DELING DEUR DESIMALE BREUKE

Kom ons hersien eers

23.1 Deel in groepe van drie. Kan julle aan mekaar verduidelik wat gebeur wanneer ons natuurlike en desimale getalle deur 10, 100 of 1 000 deel?

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

…………………………………………………………………………………………..

23.2 Maak nou beurte om vir mekaar die volgende antwoorde hardop te sê. Die derde persoon kan die antwoorde met ’n sakrekenaar kontroleer.

a) 6 ÷ 10

b) 0,3 ÷ 10

c) 0,06 ÷ 100

d) 2,9 ÷ 100

e) 4 ÷ 100

f) 15,8 ÷ 100

g) 8 ÷ 1 000

h) 39,2 ÷ 100

i) 34,67 ÷ 1 000

j) 27,458 ÷ 10

23.3 Kleur die korrekte antwoorde in en vind so die “pad” na die huis.

a) 82,1 ÷ 10

b) 86,4 ÷ 100

c) 746,8 ÷ 10

d) 625,4 ÷ 1 000

e) 39,2 ÷ 1 000

f) 72,9 ÷ 100

g) 879,1 ÷ 100

h) 6 ÷ 10

i) 35 ÷ 1 000

j) 8 ÷ 100

BEGIN
8,21 0,821 6,254 39,2 0,729 879,1 0,6 35 0,8
0,864 7,468 0,6254 0,0392 7,29 8,791 6 0,035 0,08
8,64 74,68 62,54 3,92 729 87,9 60 3,5 80

Assessering

Leeruitkomste 1: Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.3: Dit is duidelik wanneer die leerder die volgende getalle herken, klassifiseer en voorstel sodat dit beskryf en vergelyk kan word:

1.3.4 getalle in eksponensiële vorm, insluitend kwadrate van natuurlike getalle tot minstens 12 2 , natuurlike getalle tot die derde mag tot minstens 5 3 , asook die vierkants- en derdemagswortels van hierdie getalle;

Assesseringstandaard 1.7: Dit is duidelik wanneer die leerder skat en bereken deur geskikte bewerkings vir probleme wat die volgende behels, te kies en te gebruik:

1.7.7 eksponente;

Assesseringstandaard 1.9: Dit is duidelik wanneer die leerder ‘n verskeidenheid tegnieke gebruik om berekeninge te doen, insluitend:

1.9.2 die gebruik van ‘n sakrekenaar;

Assesseringstandaard 1.10: Dit is duidelik wanneer die leerder ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid daarvan te beoordeel.

Assesseringstandaard 2.3: Dit is duidelik wanneer die leerder voorstellings maak van en verwantskappe tussen veranderlikes gebruik sodat inset- en/of uitsetwaardes op ‘n verskeidenheid maniere bepaal kan word deur die gebruik van:

2.3.3 tabelle.

Questions & Answers

are nano particles real
Missy Reply
yeah
Joseph
Hello, if I study Physics teacher in bachelor, can I study Nanotechnology in master?
Lale Reply
no can't
Lohitha
where we get a research paper on Nano chemistry....?
Maira Reply
nanopartical of organic/inorganic / physical chemistry , pdf / thesis / review
Ali
what are the products of Nano chemistry?
Maira Reply
There are lots of products of nano chemistry... Like nano coatings.....carbon fiber.. And lots of others..
learn
Even nanotechnology is pretty much all about chemistry... Its the chemistry on quantum or atomic level
learn
Google
da
no nanotechnology is also a part of physics and maths it requires angle formulas and some pressure regarding concepts
Bhagvanji
hey
Giriraj
Preparation and Applications of Nanomaterial for Drug Delivery
Hafiz Reply
revolt
da
Application of nanotechnology in medicine
has a lot of application modern world
Kamaluddeen
yes
narayan
what is variations in raman spectra for nanomaterials
Jyoti Reply
ya I also want to know the raman spectra
Bhagvanji
I only see partial conversation and what's the question here!
Crow Reply
what about nanotechnology for water purification
RAW Reply
please someone correct me if I'm wrong but I think one can use nanoparticles, specially silver nanoparticles for water treatment.
Damian
yes that's correct
Professor
I think
Professor
Nasa has use it in the 60's, copper as water purification in the moon travel.
Alexandre
nanocopper obvius
Alexandre
what is the stm
Brian Reply
is there industrial application of fullrenes. What is the method to prepare fullrene on large scale.?
Rafiq
industrial application...? mmm I think on the medical side as drug carrier, but you should go deeper on your research, I may be wrong
Damian
How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
how nano science is used for hydrophobicity
Santosh
Do u think that Graphene and Fullrene fiber can be used to make Air Plane body structure the lightest and strongest. Rafiq
Rafiq
what is differents between GO and RGO?
Mahi
what is simplest way to understand the applications of nano robots used to detect the cancer affected cell of human body.? How this robot is carried to required site of body cell.? what will be the carrier material and how can be detected that correct delivery of drug is done Rafiq
Rafiq
if virus is killing to make ARTIFICIAL DNA OF GRAPHENE FOR KILLED THE VIRUS .THIS IS OUR ASSUMPTION
Anam
analytical skills graphene is prepared to kill any type viruses .
Anam
Any one who tell me about Preparation and application of Nanomaterial for drug Delivery
Hafiz
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Wiskunde graad 7. OpenStax CNX. Oct 21, 2009 Download for free at http://cnx.org/content/col11076/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 7' conversation and receive update notifications?

Ask