<< Chapter < Page Chapter >> Page >

3. ‘n Tienhoek het twee binnehoeke van 120° elk. As die oorblywende hoeke almal dieselfde grootte is, dan is elk van hierdie hoeke gelyk aan ...

a) 15°

b) 30°

c) 120°

d) 150°

e) 165°

4. Die laaste syfer van 3 1993 is ....

a) 1

b) 3

c) 6

d) 7

e) 9

Assessering

Leeruitkomstes(LUs)
LU 1
Getalle, Verwerkings en VerwantskappeDie leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.
Assesseringstandaarde(ASe)
Dit word bewys as die leerder:
1.1 die historiese en kulturele ontwikkeling van getalle kan beskryf en illustreer;
1.2 die volgende getalle kan herken, klassifiseer en voorstel om hulle te beskryf en te vergelyk:1.2.3 getalle wat in eksponensiële vorm geskryf is, insluitend vierkante en derdemagte van natuurlike getalle en hul vierkants- en derdemagwortels;1.2.6 veelvoude en faktore;1.2.7 irrasionele getalle in die konteks van meting (bv. π size 12{π} {} en vierkants- en derdemagwortels van nie-perfekte vierkante en derdemagte);
1.6 skat en bereken deur stappe te kies wat geskik is om probleme op te los wat die volgende behels:1.6.2 veelvoudige stappe met rasionale getalle (insluitend deling met breuke en desimale);1.6.3 eksponente.
LU 2
Patrone, Funksies en AlgebraDie leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel, en probleme op te los deur algebraïese taal en vaardighede te gebruik.
Dit word bewys as die leerder:
2.1 numeriese en geometriese patrone ondersoek en uitbrei om te soek vir verwantskappe of reëls, insluitend patrone wat:2.1.1 in fisiese of diagrammatiese vorm voorgestel is;2.1.2 nie beperk is tot reeks met konstante verskil of verhouding;2.1.3 in natuurlike en kulturele kontekste gevind word; 2.1.4 die leerder self geskep het;2.1.5 in tabelle weergegee word;2.1.6 algebraïes weergegee word;
2.2 waargenome verwantskappe of reëls in eie woorde of in algebra kan beskryf, verduidelik en verantwoord;
2.3 verwantskappe tussen veranderlikes voorstel en gebruik om op verskeie wyses inset- en/of uitset- waardes te bepaal deur gebruik te maak van:2.3.1 verbale beskrywings;2.3.2 vloeidiagramme;2.3.3 tabelle;2.3.4 formules en vergelykings;
2.4 wiskundige modelle bou wat oplossings vir probleemsituasies weergee, beskryf en verskaf, terwyl verantwoordelikheid teenoor die omgewing en gesondheid van ander getoon word (insluitende probleme die konteks van menseregte, sosiale ekonomiese, kulturele en omgewingskontekste);
2.7 die gelykwaardigheid van verskillende beskrywings van dieselfde verwantskap of reël wat soos volg voorgestel word kan bepaal, analiseer en interpreteer:2.7.1 verbaal;2.7.2 in vloeidiagramme;2.7.3 in tabelle;2.7.4 deur vergelykings of uitdrukkings om sodoende die mees bruikbare voorstelling vir ‘n gegewe situasie te kies;
2.8 konvensies van algebraïese noterings en die wisselbare, verenigbare en verspreibare wette kan gebruik om:2.8.1 terme soos gelyk en ongelyk te klassifiseer en om die klassifikasie te verantwoord;2.8.2 gelyke terme te versamel;2.8.3 ‘n algebraïese uitdrukking met een, twee of drie terme met ‘n eenterm te vermenigvuldig of deel;
2.8.4 algebraïese uitdrukkings wat in hakienotasie met een of twee stelle hakies en twee tipe bewerkings gegee word, te vereenvoudig;2.8.5 verskillende weergawes van algebraïese uitdrukkings met een of meer bewerkings te vergelyk en om dié wat ekwivalent is te selekteer en die keuse te motiveer;2.8.6 algebraïese uitdrukkings, formules of vergelykings binne konteks in eenvoudiger of meer bruikbare vorms te skryf;
2.9 die volgende algebra-woordeskat binne konteks kan interpreteer en gebruik: term, uitdrukking, koëffisiënt, eksponent (of indeks), basis, konstante, veranderlike, vergelyking, formule (of reël).

Memorandum

Klasopdrag 1

1.1 48 = 2 4 × 3; 60 = 2² x 3 x 5; 450 = 2 x 3² x 5²;

P 48 = {2, 3} ; P 60 = {2, 3, 5}; P 450 = {2, 3, 5}

2.1 i)== (2 10 )

= 2 5

= 32

ii)== (2³ x 5³)

= 2 x 5

= 10

2.2 a) 36

b) 192

c) 1

d) 1

e) 2

f) 17

g) 63

h) 9

i) 10

j) 4

k) 27

l) 8 x 6

Huiswerkopdrag 1

1.1= (2 12 )

= 2 4

= 16

1.2= (2 4 x 3 4 )

= 2 x 3

= 6

2.1:= 3² = 9

2.2: 5 a ² b 5

2.3:=x 3 =

= 1,2

2.4: 4 + 64 = 68

  • :2(8) = 16
  • :13

2.7: () 2 = 54

2.8:= 36

  • :2(9) = 18
  • : 9 - 27 = -18

KLASOPDRAG 2

21. KGV: Kleinste gemene veelvoud

KGV van 2, 6, 12 :

24 HGV: Hoogste gemene veelvoud

HGV van 24 en 48 :

2. 38 = 2 x 19

57 = 3 x 19

95 = 5 x 19

HGV / HCF = 19

KGV / LCM = 19 x 2 x 3 x 5

= 570

TUTORIAAL 1

1.1:= 8

1.2:

  • :2³ . 3 7,5
  • :3(3 + 4) = 21
  • :81
  • :16

1.7: 125

2.1: 3 + 2 + 4 = 9 9 ÷ 3 = 3 Ja!

2.2: 324 = 2² x 3 4

2.3:= (2² x 3 4 )

= 2 x 3²

= 18

2.4: Ja! 18 x 18 = 324 /18² = 324

  • :9
  • : 6 2 size 12{ { {6} over {2} } } {} = 3

3.3: 9 + 16 size 12{ sqrt {9+"16"} } {} = 25 size 12{ sqrt {"25"} } {} = 5

3.4: 4 x 8

  • :4 3 = 64
  • :3

Verrykingsoefening

1. d

2. c

3. 180 ( 10 2 ) 10 size 12{ { {"180" \( "10" - 2 \) } over {"10"} } } {} = 144º (een hoek) (1 440 – 240) ÷ 8 = 150 (d)

4. b: 3 1993 eindig op 1

TOETS 1

  • :23, 29
  • :1, 2, 3, 6, 12
  • :;;;;;;;;4, 6, 12

2. * 2 1 + 2 + 1 + 3 + 1 + 5 + 6 + 3 = 22

3.1: 100 size 12{ sqrt {"100"} } {} = 10

3.2:; 2 3 = 8

3.3:; 25 9 size 12{ sqrt { { {"25"} over {9} } } } {} = 5 3 size 12{ { {5} over {3} } } {} = 1 2 3 size 12{1 { {2} over {3} } } {}

3.4: 4 100 size 12{ sqrt { { {4} over {"100"} } } } {} = 2 10 size 12{ { {2} over {"10"} } } {} = 0,2 / 1 5 size 12{ { {1} over {5} } } {}

3.5: 64 size 12{ sqrt {"64"} } {} = 8

  • :2 x 3 = 6
  • :9
  • :4 – 1 = 3

4. 2 6 x3 3 3 size 12{ nroot { size 8{3} } {2 rSup { size 8{6} } x3 rSup { size 8{3} } } } {} = 2 2 x 3

= 4 x 3

= 12

5. (2) = 2 2 = 4

(4) = 4 4 = 256

Questions & Answers

anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 8. OpenStax CNX. Sep 11, 2009 Download for free at http://cnx.org/content/col11033/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 8' conversation and receive update notifications?

Ask