<< Chapter < Page
  Wiskunde graad 6   Page 1 / 1
Chapter >> Page >

Wiskunde

Gewone breuke en desimale breuke

Gewone breuke

Opvoeders afdeling

Memorandum

Daar is 5 modules:

1. Getalbegrip, Optelling en Aftrekking

2. Vermenigvuldiging en Deling

3. Breuke en Desimale Breuke

4. Meting en Tyd

5. Meetkunde; Datahantering en Waarskynlikheid

4 Dit is belangrik dat opvoeders die modules in volgorde (soos hierbo genoem) sal doen, aangesien die leerders die vorige module se kennis en vaardighede benodig vir die daaropvolgende module.

3. GEWONE EN DESIMALE BREUKE (LU 1; 2 EN 5)

LEEREENHEID 1 FOKUS OP GEWONE BREUKE

  • Hierdie module is ‘n voortsetting van die werk wat in graad 5 gedoen is. Daar word uitgebrei op die optelling en aftrekking van breuke, en die berekening van ‘n breuk van ‘n sekere hoeveelheid word ook hersien.
  • Maak seker dat die leerders die korrekte terminologie bemeester het, asook die korrekte strategieë om bogenoemde korrek te bereken.
  • Kritieke Uitkoms 5 (Effektiewe kommunikasie deur visuele, simboliese, en/of taalvaardighede op verskillende maniere te gebruik) is hier van toepassing.
  • 3 weke behoort voldoende te wees om hierdie module te voltooi.
  • ** Aktiwiteit 17 is ‘n taak vir die portefeulje. Hoewel dit ‘n baie eenvoudige opdrag is, moet leerders in staat wees om dit netjies en akkuraat uit te voer. Leerders moet voor die tyd weet hoe opvoeders die taak gaan assesseer.

LEEREENHEID 2 FOKUS OP DESIMALE BREUKE

  • Hierdie module is ‘n uitbreiding op werk wat in graad 5 afgehandel is. Leerders moet nou in staat wees om desimale breuke korrek af te rond tot die naaste tiende, honderdste en duisendste. Beklemtoon weer die korrekte metode om op te tel en af te trek (vertikaal). Gee ook baie aandag aan die vermenigvuldiging en deling van desimale breuke.
  • Aangesien leerders laasgenoemde nogal moeiliker vind, kan 3 - 4 weke aan dié module spandeer word.
  • ** Aktiwiteit 19 is ‘n taak vir die portefeulje. Die opdrag is baie eenvoudig, maar leerders moet in staat wees om dit netjies en akkuraat uit te voer. Leerders moet voor die tyd weet hoe opvoeders die taak gaan assesseer.
4. ONEGTE BREUK GEMENGEDE GETAL
4.1 14 4 size 12{ { { size 8{"14"} } over { size 8{4} } } } {} 3 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}
4.2 19 6 size 12{ { { size 8{"19"} } over { size 8{6} } } } {} 3 1 6 size 12{ { { size 8{1} } over { size 8{6} } } } {}
4.3 15 7 size 12{ { { size 8{"15"} } over { size 8{7} } } } {} 2 1 7 size 12{ { { size 8{1} } over { size 8{7} } } } {}
4.4 11 8 size 12{ { { size 8{"11"} } over { size 8{8} } } } {} 1 3 8 size 12{ { { size 8{3} } over { size 8{8} } } } {}
4.5 9 2 size 12{ { { size 8{9} } over { size 8{2} } } } {} 4 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

Leerders afdeling

Inhoud

Gewone breuke

In graad 5 het ons baie met breuke gewerk. Voordat ons egter by hierdie jaar se werk kan uitkom, wil ons eers weet hoe goed jy nog onthou! Kyk of jy die woorde in kolom A met die korrekte verduideliking in kolom B kan verbind:

In graad 5 het ons baie met breuke gewerk. Voordat ons egter by hierdie jaar se werk kan uitkom, wil ons eers weet hoe goed jy nog onthou! Kyk of jy die woorde in kolom A met die korrekte verduideliking in kolom B kan verbind:

A B
Teller Dui aan hoeveel gelyke dele is ingekleur / geneem
Noemer Teller is kleiner as noemer
Ekwivalente breuk Bestaan uit ‘n heelgetal en ‘n egte breuk en is altyd groter as 1
Egte breuk Dui aan in hoeveel gelyke dele die hele verdeel is
Onegte breuk Gelykwaardige breuke (breuke wat ewe groot is)
Gemengde getal Teller is groter as noemer en die breuk is altyd groter as 1

Aktiwiteit: om die getalle te herken en te klassifiseer om hul sodoende te beskryf en te vergelyk [lu 1.3.3]

1. Kom ons hersien nog! Werk saam met ‘n maat en sê watter breukdeel van die vierkant word voorgestel deur:

A : ………………………………………………

B : ………………………………………………

C : ………………………………………………

A + C : …………………………………………..

B + C : …………………………………………..

C + D : …………………………………………..

A + D : …………………………………………..

A + B : …………………………………………..

B + D : …………………………………………..

2. Al jul antwoorde is ……………………………………………………. breuke.

3. Kyk na die bak appels. Kleur die egte breuke appels geel in; die onegtes groen en die gemengde getalle rooi:

4. Voltooi die tabel:

Assessering

Leeruitkomste 1: Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.3: Dit is duidelik wanneer die leerder die volgende getalle voorstel en herken sodat dit beskryf en vergelyk kan word:

1.3.3 gewone breuke, insluitend spesifiek tiendes, honderdstes en persentasies.

Questions & Answers

what is math number
Tric Reply
x-2y+3z=-3 2x-y+z=7 -x+3y-z=6
Sidiki Reply
Need help solving this problem (2/7)^-2
Simone Reply
x+2y-z=7
Sidiki
what is the coefficient of -4×
Mehri Reply
-1
Shedrak
the operation * is x * y =x + y/ 1+(x × y) show if the operation is commutative if x × y is not equal to -1
Alfred Reply
An investment account was opened with an initial deposit of $9,600 and earns 7.4% interest, compounded continuously. How much will the account be worth after 15 years?
Kala Reply
lim x to infinity e^1-e^-1/log(1+x)
given eccentricity and a point find the equiation
Moses Reply
12, 17, 22.... 25th term
Alexandra Reply
12, 17, 22.... 25th term
Akash
College algebra is really hard?
Shirleen Reply
Absolutely, for me. My problems with math started in First grade...involving a nun Sister Anastasia, bad vision, talking & getting expelled from Catholic school. When it comes to math I just can't focus and all I can hear is our family silverware banging and clanging on the pink Formica table.
Carole
I'm 13 and I understand it great
AJ
I am 1 year old but I can do it! 1+1=2 proof very hard for me though.
Atone
hi
Adu
Not really they are just easy concepts which can be understood if you have great basics. I am 14 I understood them easily.
Vedant
find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
I know this work
salma
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
Abhi
If f(x) = x-2 then, f(3) when 5f(x+1) 5((3-2)+1) 5(1+1) 5(2) 10
Augustine
how do they get the third part x = (32)5/4
kinnecy Reply
make 5/4 into a mixed number, make that a decimal, and then multiply 32 by the decimal 5/4 turns out to be
AJ
how
Sheref
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
hmm
Abhi
is it a question of log
Abhi
🤔.
Abhi
I rally confuse this number And equations too I need exactly help
salma
But this is not salma it's Faiza live in lousvile Ky I garbage this so I am going collage with JCTC that the of the collage thank you my friends
salma
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
hii
Uday
hi
salma
hi
Ayuba
Hello
opoku
hi
Ali
greetings from Iran
Ali
salut. from Algeria
Bach
hi
Nharnhar
A soccer field is a rectangle 130 meters wide and 110 meters long. The coach asks players to run from one corner to the other corner diagonally across. What is that distance, to the nearest tenths place.
Kimberly Reply
Jeannette has $5 and $10 bills in her wallet. The number of fives is three more than six times the number of tens. Let t represent the number of tens. Write an expression for the number of fives.
August Reply
What is the expressiin for seven less than four times the number of nickels
Leonardo Reply
How do i figure this problem out.
how do you translate this in Algebraic Expressions
linda Reply
why surface tension is zero at critical temperature
Shanjida
I think if critical temperature denote high temperature then a liquid stats boils that time the water stats to evaporate so some moles of h2o to up and due to high temp the bonding break they have low density so it can be a reason
s.
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
hoe werk werkbord in wiskunde
Nel Reply
werkbord
Nel Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 6. OpenStax CNX. Sep 15, 2009 Download for free at http://cnx.org/content/col11072/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 6' conversation and receive update notifications?

Ask