<< Chapter < Page Chapter >> Page >

Experimental procedure

1. Place 0.25 g. of ferrocene in a 10 mL round-bottom flask containing a magnetic stir bar. Prepare a hot water bath by heating the water to nearly the boiling point while preparing the following reaction mixture.

2. In a fume hood, add 1.0 mL of acetic anhydride and 0.15 mL of 85% phosphoric acid to the flask. The reaction mixture should heat up and darken in color. Swirl the flask, heating occasionally in a hot water bath if necessary, until all the ferrocene dissolves.

3. Attach a reflux condenser then heat the reaction mixture with stirring in the hot water bath prepared in step 1. Heat the mixture for 10 minutes during which time a purple color may develop.

Workup and purification:

4. Pour the reaction mixture onto 2 or 3 cubes of ice in a 400 mL beaker, then rinse the flask with two 5 mL portions of ice water. (A black residue may remain in the flask.) Stir the orange-brown mixture with a glass rod for a few minutes. Any insoluble black material present will be removed in the following steps.

5. Add 6.0 mL of 3 M aqueous NaOH solution, then carefully add solid sodium bicarbonate in small portions until the remaining acid has been neutralized (about 2-3 grams). Use great care to avoid excessive foaming during bicarbonate addition. This step can be done with magnetic stirring, but make sure to use a stirring plate that is not hot. Stir well and crush any lumps to afford a dark-brown suspension.

6. Allow the mixture to stand for 20 minutes, and then collect the crude product by vacuum filtration. Continue to pull air through the product for a few minutes to dry it. Finish the drying process by pressing the solid product between two sheets of filter paper or paper towels. Save some of this crude product for TLC analysis.

7. Transfer the solid and a stir bar to a 50 mL beaker and add 10 mL of hexanes. Boil for 5 minutes with stirring, and then decant the dark-orange solution into another Erlenmeyer flask leaving behind a black gummy substance. If you boil off all the liquid, try again with another 10 mL of hexane and lower heat.

8. To the hot solution, add a spatula-full of decolorizing carbon (If you use too much, you will reduce your yield of carbon). Heat with swirling, and then perform a hot filtration to remove the decolorizing carbon.

9. Set the flask aside to cool slowly. Red-brown needles of acetylferrocene should begin to form. Once the flask has reached room temperature, cool it in ice. Collect the crystalline product by vacuum filtration and washing with a small quantity of cold hexane, then dry by continuing to pull air through the product for a few minutes. If you add to much cold hexane here, you will lose your product.

Characterization:

10. Record the yield and melting point range for your recrystallized acetylferrocene.

11. Analyze your crude and recrystallized products by TLC. Separately dissolve very small amounts of pure ferrocene, the crude product, and the recrystallized acetylferrocene in a few drops of toluene. Spot the solutions on silica gel plates and develop with 30:1 toluene/absolute ethanol. Visualization is simple as each compound is brightly colored.

Safety

Wear safety goggles and gloves all the time.

Waste disposal

Organic compounds must be disposed in the proper container.

Approximate lab time 2 – 2 ½ hours

Report 4: friedel- crafts

(Total 30 points)

(Click here for the Report Form

Note: In preparing this report you are free to use references and consult with others. However, you may not copy from other students’ work or misrepresent your own data (see honor code).

Name(Print then sign): ___________________________________________________

Lab Day: ___________________Section: ________TA__________________________

1. Draw the mechanism for the reaction of ferrocene, acetic anhydride, and phosphoric acid. (6 points)

2. Show your theoretical and percent yield calculations for the reaction. (3 points)

 

 

3. The melting point of your re-crystallized acetylferrocene is: ---- (2 points)

4. Draw the TLC plates and show your R f size 12{R rSub { size 8{f} } } {} calculations (4 points)

5. Classify each of the following species as anti-aromatic, aromatic, or nonaromatic.

Support your answer. (4 points)

6. Ordinarily the barrier to rotation about a carbon-carbon double bond is quite high (40

kcal/mol), but the compound below was observed to have a rotational barrier of only about 20 kcal/mol. Explain this result. (3 points)

7. Propose a mechanism for the following reaction. (8 points)

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chem217labsfall07. OpenStax CNX. Oct 16, 2007 Download for free at http://cnx.org/content/col10463/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chem217labsfall07' conversation and receive update notifications?

Ask