Kirchhoff’s second rule requires
$\text{emf}-\text{Ir}-{\text{IR}}_{1}-{\text{IR}}_{2}=0$ . Rearranged, this is
$\text{emf}=\text{Ir}+{\text{IR}}_{1}+{\text{IR}}_{2}$ , which means the emf equals the sum of the
$\text{IR}$ (voltage) drops in the loop.
Applying kirchhoff’s rules
By applying Kirchhoff’s rules, we generate equations that allow us to find the unknowns in circuits. The unknowns may be currents, emfs, or resistances. Each time a rule is applied, an equation is produced. If there are as many independent equations as unknowns, then the problem can be solved. There are two decisions you must make when applying Kirchhoff’s rules. These decisions determine the signs of various quantities in the equations you obtain from applying the rules.
When applying Kirchhoff’s first rule, the junction rule, you must label the current in each branch and decide in what direction it is going. For example, in
[link] ,
[link] , and
[link] , currents are labeled
${I}_{1}$ ,
${I}_{2}$ ,
${I}_{3}$ , and
$I$ , and arrows indicate their directions. There is no risk here, for if you choose the wrong direction, the current will be of the correct magnitude but negative.
When applying Kirchhoff’s second rule, the loop rule, you must identify a closed loop and decide in which direction to go around it, clockwise or counterclockwise. For example, in
[link] the loop was traversed in the same direction as the current (clockwise). Again, there is no risk; going around the circuit in the opposite direction reverses the sign of every term in the equation, which is like multiplying both sides of the equation by
$\mathrm{\u20131.}$
[link] and the following points will help you get the plus or minus signs right when applying the loop rule. Note that the resistors and emfs are traversed by going from a to b. In many circuits, it will be necessary to construct more than one loop. In traversing each loop, one needs to be consistent for the sign of the change in potential. (See
[link] .)
When a resistor is traversed in the same direction as the current, the change in potential is
$-\text{IR}$ . (See
[link] .)
When a resistor is traversed in the direction opposite to the current, the change in potential is
$+\text{IR}$ . (See
[link] .)
When an emf is traversed from
$\u2013$ to + (the same direction it moves positive charge), the change in potential is +emf. (See
[link] .)
When an emf is traversed from + to
$\u2013$ (opposite to the direction it moves positive charge), the change in potential is
$-$ emf. (See
[link] .)
Questions & Answers
Calculate the Newton's the weight of a 2.5 Kilogram of melon. What is its weight in pound?
Since you said they have the same momentum.. So meaning that there is more like an inverse proportionality in the quantities used to find the momentum. We are told that the the is a larger mass and a smaller mass., so we can conclude that the smaller mass had higher velocity as compared to other one
Gift
Mathamaticaly correct
megavado
Mathmaticaly correct :)
megavado
I have proven it by using my own values
Gift
Larger mass=4g
Smaller mass=2g
Momentum of both=8
Meaning V for L =2 and V for S=4
Now find there kinetic energies using the data presented
Gift
grateful soul...thanks alot
Faith
Welcome
Gift
2 stones are thrown vertically upward from the ground, one with 3 times the
initial speed of the other. If the faster stone takes 10 s to return to the ground, how
long will it take the slower stone to return? If the slower stone reaches a maximum
height of H, how high will the faster stone go
Suppose that a grandfather clock is running slowly; that is, the time it takes to complete each cycle is longer than it should be. Should you (@) shorten or (b) lengthen the pendulam to make the clock keep attain the preferred time?
shorten it, since that is practice able using the simple pendulum as experiment
Silvia
it'll always give the results needed no need to adjust the length, it is always measured by the starting time and ending time by the clock
Paul
it's not in relation to other clocks
Paul
wat is d formular for newton's third principle
Silvia
okay
Silvia
shorten the pendulum string because the difference in length affects the time of oscillation.if short , the time taken will be adjusted.but if long ,the time taken will be twice the previous cycle.
Boyles law states that the volume of a fixed amount of gas is inversely proportional to pressure acting on that given gas if the temperature remains constant
which is:
V<k/p or
V=k(1/p)