<< Chapter < Page Chapter >> Page >

Let v = x z , y z , 0 be the velocity field of a fluid. Let C be the solid cube given by 1 x 4 , 2 y 5 , 1 z 4 , and let S be the boundary of this cube (see the following figure). Find the flow rate of the fluid across S .

This is a figure of a diagram of the given vector field in three dimensions. The x components are x/z, the y components are y/z, and the z components are 0.

9 ln ( 16 )

Got questions? Get instant answers now!

[link] illustrates a remarkable consequence of the divergence theorem. Let S be a piecewise, smooth closed surface and let F be a vector field defined on an open region containing the surface enclosed by S . If F has the form F = f ( y , z ) , g ( x , z ) , h ( x , y ) , then the divergence of F is zero. By the divergence theorem, the flux of F across S is also zero. This makes certain flux integrals incredibly easy to calculate. For example, suppose we wanted to calculate the flux integral S F · d S where S is a cube and

F = sin ( y ) e y z , x 2 z 2 , cos ( x y ) e sin x .

Calculating the flux integral directly would be difficult, if not impossible, using techniques we studied previously. At the very least, we would have to break the flux integral into six integrals, one for each face of the cube. But, because the divergence of this field is zero, the divergence theorem immediately shows that the flux integral is zero.

We can now use the divergence theorem to justify the physical interpretation of divergence that we discussed earlier. Recall that if F is a continuous three-dimensional vector field and P is a point in the domain of F , then the divergence of F at P is a measure of the “outflowing-ness” of F at P . If F represents the velocity field of a fluid, then the divergence of F at P is a measure of the net flow rate out of point P (the flow of fluid out of P less the flow of fluid in to P ). To see how the divergence theorem justifies this interpretation, let B r be a ball of very small radius r with center P , and assume that B r is in the domain of F . Furthermore, assume that B r has a positive, outward orientation. Since the radius of B r is small and F is continuous, the divergence of F is approximately constant on B r . That is, if P is any point in B r , then div F ( P ) div F ( P ) . Let S r denote the boundary sphere of B r . We can approximate the flux across S r using the divergence theorem as follows:

S r F · d S = B r div F d V B r div F ( P ) d V = div F ( P ) V ( B r ) .

As we shrink the radius r to zero via a limit, the quantity div F ( P ) V ( B r ) gets arbitrarily close to the flux. Therefore,

div F ( P ) = lim r 0 1 V ( B r ) S r F · d S

and we can consider the divergence at P as measuring the net rate of outward flux per unit volume at P . Since “outflowing-ness” is an informal term for the net rate of outward flux per unit volume, we have justified the physical interpretation of divergence we discussed earlier, and we have used the divergence theorem to give this justification.

Application to electrostatic fields

The divergence theorem has many applications in physics and engineering. It allows us to write many physical laws in both an integral form and a differential form (in much the same way that Stokes’ theorem allowed us to translate between an integral and differential form of Faraday’s law). Areas of study such as fluid dynamics, electromagnetism, and quantum mechanics have equations that describe the conservation of mass, momentum, or energy, and the divergence theorem allows us to give these equations in both integral and differential forms.

Questions & Answers

general equation for photosynthesis
Ojasope Reply
6CO2 + 6H2O + solar energy= C6H1206+ 6O2
meaning of amino Acids
a diagram of an adult mosquito
mubarak Reply
what are white blood cells
Mlungisi Reply
white blood cell is part of the immune system. that help fight the infection.
what about tissue celss
Cells with a similar function, form a tissue. For example the nervous tissue is composed by cells:neurons and glia cells. Muscle tissue, is composed by different cells.
I need further explanation coz celewi anything guys,,,
Calvin Reply
hey guys
on what?
is air homogenous or hetrogenous
damiane Reply
why saying homogenous?
explain if oxygen is necessary for photosynthesis
Allice Reply
explain if oxygen is necessary for photosynthesis
Allice Reply
Yes, the plant does need oxygen. The plant uses oxygen, water, light, and produced food. The plant use process called photosynthesis.
By using the energy of sunlight, plants convert carbon dioxide and water into carbohydrates and oxygen by photosynthesis. This happens during the day and sunlight is needed.
no. it s a product of the process
yet still is it needed?
no. The reaction is: 6CO2+6H20+ solar energy =C6H12O6(glucose)+602. The plant requires Carbon dioxyde, light, and water Only, and produces glucose and oxygen( which is a waste).
what was the question
the specific one
the study of non and living organism is called.
Is call biology
what Is ecology
Musonda Reply
what is a cell
Emmanuel Reply
A cell is a basic structure and functional unit of life
what is biolgy
Hawwi Reply
is the study of living and non living organisms
may u draw the female organ
i dont understand
me too
anabolism and catabolism
Sani Reply
Anabolism refers to the process in methabolism in which complex molecules are formed "built" and requires energy to happen. Catabolism is the opposite process: complex molecules are deconstructed releasing energy, such as during glicolysis.
Explain briefly independent assortment gene .
Otu Reply
hi I'm Anatalia
what do you mean by pituitary gland
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Calculus volume 3. OpenStax CNX. Feb 05, 2016 Download for free at http://legacy.cnx.org/content/col11966/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 3' conversation and receive update notifications?