# 8.1 Graphs of the sine and cosine functions  (Page 3/13)

 Page 3 / 13

## Amplitude of sinusoidal functions

If we let $\text{\hspace{0.17em}}C=0\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}D=0\text{\hspace{0.17em}}$ in the general form equations of the sine and cosine functions, we obtain the forms

The amplitude    is $\text{\hspace{0.17em}}A,\text{\hspace{0.17em}}$ and the vertical height from the midline    is $\text{\hspace{0.17em}}|A|.\text{\hspace{0.17em}}$ In addition, notice in the example that

## Identifying the amplitude of a sine or cosine function

What is the amplitude of the sinusoidal function $\text{\hspace{0.17em}}f\left(x\right)=-4\mathrm{sin}\left(x\right)?\text{\hspace{0.17em}}$ Is the function stretched or compressed vertically?

Let’s begin by comparing the function to the simplified form $\text{\hspace{0.17em}}y=A\mathrm{sin}\left(Bx\right).$

In the given function, $\text{\hspace{0.17em}}A=-4,\text{\hspace{0.17em}}$ so the amplitude is $\text{\hspace{0.17em}}|A|=|-4|=4.\text{\hspace{0.17em}}$ The function is stretched.

What is the amplitude of the sinusoidal function $\text{\hspace{0.17em}}f\left(x\right)=\frac{1}{2}\mathrm{sin}\left(x\right)?\text{\hspace{0.17em}}$ Is the function stretched or compressed vertically?

$\frac{1}{2}\text{\hspace{0.17em}}$ compressed

## Analyzing graphs of variations of y = sin x And y = cos x

Now that we understand how $\text{\hspace{0.17em}}A\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}B\text{\hspace{0.17em}}$ relate to the general form equation for the sine and cosine functions, we will explore the variables $\text{\hspace{0.17em}}C\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}D.\text{\hspace{0.17em}}$ Recall the general form:

The value $\text{\hspace{0.17em}}\frac{C}{B}\text{\hspace{0.17em}}$ for a sinusoidal function is called the phase shift , or the horizontal displacement of the basic sine or cosine function    . If $\text{\hspace{0.17em}}C>0,\text{\hspace{0.17em}}$ the graph shifts to the right. If $\text{\hspace{0.17em}}C<0,\text{\hspace{0.17em}}$ the graph shifts to the left. The greater the value of $\text{\hspace{0.17em}}|C|,\text{\hspace{0.17em}}$ the more the graph is shifted. [link] shows that the graph of $\text{\hspace{0.17em}}f\left(x\right)=\mathrm{sin}\left(x-\pi \right)\text{\hspace{0.17em}}$ shifts to the right by $\text{\hspace{0.17em}}\pi \text{\hspace{0.17em}}$ units, which is more than we see in the graph of $\text{\hspace{0.17em}}f\left(x\right)=\mathrm{sin}\left(x-\frac{\pi }{4}\right),\text{\hspace{0.17em}}$ which shifts to the right by $\text{\hspace{0.17em}}\frac{\pi }{4}\text{\hspace{0.17em}}$ units.

While $\text{\hspace{0.17em}}C\text{\hspace{0.17em}}$ relates to the horizontal shift, $\text{\hspace{0.17em}}D\text{\hspace{0.17em}}$ indicates the vertical shift from the midline in the general formula for a sinusoidal function. See [link] . The function $\text{\hspace{0.17em}}y=\mathrm{cos}\left(x\right)+D\text{\hspace{0.17em}}$ has its midline at $\text{\hspace{0.17em}}y=D.$

Any value of $\text{\hspace{0.17em}}D\text{\hspace{0.17em}}$ other than zero shifts the graph up or down. [link] compares $\text{\hspace{0.17em}}f\left(x\right)=\mathrm{sin}\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ with $\text{\hspace{0.17em}}f\left(x\right)=\mathrm{sin}\text{\hspace{0.17em}}x+2,\text{\hspace{0.17em}}$ which is shifted 2 units up on a graph.

## Variations of sine and cosine functions

Given an equation in the form $\text{\hspace{0.17em}}f\left(x\right)=A\mathrm{sin}\left(Bx-C\right)+D\text{\hspace{0.17em}}$ or $\text{\hspace{0.17em}}f\left(x\right)=A\mathrm{cos}\left(Bx-C\right)+D,\text{\hspace{0.17em}}$ $\frac{C}{B}\text{\hspace{0.17em}}$ is the phase shift    and $\text{\hspace{0.17em}}D\text{\hspace{0.17em}}$ is the vertical shift    .

## Identifying the phase shift of a function

Determine the direction and magnitude of the phase shift for $\text{\hspace{0.17em}}f\left(x\right)=\mathrm{sin}\left(x+\frac{\pi }{6}\right)-2.$

Let’s begin by comparing the equation to the general form $\text{\hspace{0.17em}}y=A\mathrm{sin}\left(Bx-C\right)+D.$

In the given equation, notice that $\text{\hspace{0.17em}}B=1\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}C=-\frac{\pi }{6}.\text{\hspace{0.17em}}$ So the phase shift is

or $\text{\hspace{0.17em}}\frac{\pi }{6}\text{\hspace{0.17em}}$ units to the left.

Determine the direction and magnitude of the phase shift for $\text{\hspace{0.17em}}f\left(x\right)=3\mathrm{cos}\left(x-\frac{\pi }{2}\right).$

$\frac{\pi }{2};\text{\hspace{0.17em}}$ right

## Identifying the vertical shift of a function

Determine the direction and magnitude of the vertical shift for $\text{\hspace{0.17em}}f\left(x\right)=\mathrm{cos}\left(x\right)-3.$

Let’s begin by comparing the equation to the general form $\text{\hspace{0.17em}}y=A\mathrm{cos}\left(Bx-C\right)+D.$

In the given equation, $\text{\hspace{0.17em}}D=-3\text{\hspace{0.17em}}$ so the shift is 3 units downward.

Determine the direction and magnitude of the vertical shift for $\text{\hspace{0.17em}}f\left(x\right)=3\mathrm{sin}\left(x\right)+2.$

2 units up

Given a sinusoidal function in the form $\text{\hspace{0.17em}}f\left(x\right)=A\mathrm{sin}\left(Bx-C\right)+D,\text{\hspace{0.17em}}$ identify the midline, amplitude, period, and phase shift.

1. Determine the amplitude as $\text{\hspace{0.17em}}|A|.$
2. Determine the period as $\text{\hspace{0.17em}}P=\frac{2\pi }{|B|}.$
3. Determine the phase shift as $\text{\hspace{0.17em}}\frac{C}{B}.$
4. Determine the midline as $\text{\hspace{0.17em}}y=D.$

the third and the seventh terms of a G.P are 81 and 16, find the first and fifth terms.
if a=3, b =4 and c=5 find the six trigonometric value sin
pls how do I factorize x⁴+x³-7x²-x+6=0
in a function the input value is called
how do I test for values on the number line
if a=4 b=4 then a+b=
a+b+2ab
Kin
commulative principle
a+b= 4+4=8
Mimi
If a=4 and b=4 then we add the value of a and b i.e a+b=4+4=8.
Tariq
what are examples of natural number
an equation for the line that goes through the point (-1,12) and has a slope of 2,3
3y=-9x+25
Ishaq
show that the set of natural numberdoes not from agroup with addition or multiplication butit forms aseni group with respect toaaddition as well as multiplication
x^20+x^15+x^10+x^5/x^2+1
evaluate each algebraic expression. 2x+×_2 if ×=5
if the ratio of the root of ax+bx+c =0, show that (m+1)^2 ac =b^2m
By the definition, is such that 0!=1.why?
(1+cosA+IsinA)(1+cosB+isinB)/(cos@+isin@)(cos$+isin$)
hatdog
Mark
jaks
Ryan
how we can draw three triangles of distinctly different shapes. All the angles will be cutt off each triangle and placed side by side with vertices touching

#### Get Jobilize Job Search Mobile App in your pocket Now! By By By Madison Christian By By Jonathan Long By Madison Christian By OpenStax By OpenStax By OpenStax By Brooke Delaney By Marion Cabalfin By Cath Yu