# 0.6 Sorting  (Page 7/20)

 Page 7 / 20

Selection sort can be implemented as a stable sort . If, rather than swapping in step 2, the minimum value is inserted into the first position (that is, all intervening items moved down), the algorithm is stable. However, this modification leads to Θ(n2 ) writes, eliminating the main advantage of selection sort over insertion sort, which is always stable.

## 6.1.3. bubble sort

Bubble sort is a simple sorting algorithm . It works by repeatedly stepping through the list to be sorted, comparing two items at a time and swapping them if they are in the wrong order. The pass through the list is repeated until no swaps are needed, which means the list is sorted. The algorithm gets its name from the way smaller elements "bubble" to the top (i.e. the beginning) of the list via the swaps. (Another opinion: it gets its name from the way greater elements "bubble" to the end.) Because it only uses comparisons to operate on elements, it is a comparison sort . This is the easiest comparison sort to implement.

A simple way to express bubble sort in pseudocode is as follows:

procedure bubbleSort( A : list of sortable items ) defined as:

do

swapped := false

for each i in 0 to length( A ) - 2 do:

if A[ i ]>A[ i + 1 ] then

swap( A[ i ], A[ i + 1 ])

swapped := true

end if

end for

while swapped

end procedure

The algorithm can also be expressed as:

procedure bubbleSort( A : list of sortable items ) defined as:

for each i in 1 to length(A) do:

for each j in length(A) downto i + 1 do:

if A[ j ]<A[ j - 1 ] then

swap( A[ j ], A[ j - 1 ])

end if

end for

end for

end procedure

This difference between this and the first pseudocode implementation is discussed later in the article .

## Best-case performance

Bubble sort has best-case complexity Ω (n). When a list is already sorted, bubblesort will pass through the list once, and find that it does not need to swap any elements. Thus bubble sort will make only n comparisons and determine that list is completely sorted. It will also use considerably less time than О(n²) if the elements in the unsorted list are not too far from their sorted places. MKH...

## Rabbits and turtles

The positions of the elements in bubble sort will play a large part in determining its performance. Large elements at the top of the list do not pose a problem, as they are quickly swapped downwards. Small elements at the bottom, however, as mentioned earlier, move to the top extremely slowly. This has led to these types of elements being named rabbits and turtles, respectively.

Various efforts have been made to eliminate turtles to improve upon the speed of bubble sort. Cocktail sort does pretty well, but it still retains O(n2) worst-case complexity. Comb sort compares elements large gaps apart and can move turtles extremely quickly, before proceeding to smaller and smaller gaps to smooth out the list. Its average speed is comparable to faster algorithms like Quicksort .

## Alternative implementations

One way to optimize bubble sort is to note that, after each pass, the largest element will always move down to the bottom. During each comparison, it is clear that the largest element will move downwards. Given a list of size n, the nth element will be guaranteed to be in its proper place. Thus it suffices to sort the remaining n - 1 elements. Again, after this pass, the n - 1th element will be in its final place.

anyone know any internet site where one can find nanotechnology papers?
research.net
kanaga
Introduction about quantum dots in nanotechnology
what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!