<< Chapter < Page
  Wiskunde graad 7   Page 1 / 1
Chapter >> Page >


Voorspellings, vergelykings en veranderlikes

Opvoeders afdeling


6. 12

7 (a) 18

(b) 13

(c) 17

(d) 19

(e) 12

Som: 45



1 14 7 12
15 4 9 6
10 5 16 3
8 11 2 13

Som: 34

9. (a) 48

(b) 10

(c) 64

(d) 90

(e) 108

10. (a) waar

(b) waar

(c) vals

(d) vals

(e) waar


_____ _____ _____
_____ _____ _____
_____ _____ _____


9 969 _____ 9 699 _____
_____ _____ _____ 6 669
6 966 9 669 6 696 _____
6 699 _____ 6 969 9 666

13. Leerders se eie assessering

Leerders afdeling


Aktiwiteit: voorspellings, vergelykings en veranderlikes (towervierkant) [lu 1.7.2, lu 1.9.1, lu 1.10, lu 2.5]

6. Onthou jy nog?

In ’n towervierkant is die som van die getalle horisontaal, vertikaal en diagonaal (skuins) dieselfde.

Wat is die som van hierdie towervierkant? _____________________________

1 8 3
6 4 2
5 0 7

7. Soms vervang ons getalle met letters van die alfabet.

Kyk na die volgende towervierkant. Vervang nou die letters met die korrekte getalle.

a 11 16
b 15 c
14 d e
a: _____________________________b: _____________________________c: _____________________________d: _____________________________e: _____________________________

Wat is die som van die towervierkant? _____________________________

8. Kopkrapper!

In die volgende towervierkant is al die getalle vervang deur letters.

As k = 4 en c = 1 , skryf die korrekte getalle in.

Onthou: 3k beteken 3 × k en 2c beteken 2 × c

c 3k + 2c k + 3c 2k + 4c
3k + 3c 4c 2k + c k + 2c
2k + 2c k + c 3k + 4c 3c
k + 4c 2k + 3c 2c 3k + c

Wat is die som van die towervierkant? _____________________________________

9. Ons kan ook aan party letters sekere waardes gee, bv.

a = 9 ; b = 6 ; c = 8 ; d = 2 ; e = 10 en f = 20


a) b x c = ________________________________

b) f ÷ d = ________________________________

c) a x b + e = ____________________________

d) (f – e) x a = ____________________________

e) [(c – d) + b] x a = _______________________

10. Vervang die letters met enige getal van jou keuse en kyk of die volgende stellings waar of onwaar is:

a) e + f = f + e _______________________

b) 2k + 2c = 2 x (k + c) _______________________

c) h – g = g – h _______________________

d) 4b = 4 + b _______________________

e) x + (y + z) = (x + y) + z _______________________

11. Kopkrapper!

Bou jou eie “towervierkant” . Verminder die sewe vierkante na vyf deur net vier tandestokkies te skuif. Teken jou poging langs die gegewe een en dui aan watter stokkies waarheen geskuif is.

12. Nog ‘n kopkrapper!

Kan jy die volgende towervierkant voltooi deur slegs ’n 6 en /of ’n 9 in jou getalle te gebruik? (Onthou: die som van al die getalle in elke ry, kolom en diagonaal moet dieselfde wees!)

6 666 6 996
9 696 6 999 9 966
9 999
9 996

13. Tyd vir selfassessering

Maak ’n regmerkie in die toepaslike blokkie:

Onseker Redelik seker Baie seker
Ek kan die volgende verduidelik en ’n voorbeeld gee: ____ ____ ____
a) vierkantgetal ____ ____ ____
b) reghoekgetal ____ ____ ____
c) kubusgetal ____ ____ ____
Ek ken ’n sinoniem vir: ____ ____ ____
a) vierkantgetal ____ ____ ____
b) kubusgetal ____ ____ ____
Ek kan letters deur getalle vervang en so ’n towervierkant oplos ____ ____ ____
Ek kan die 4 hoofbewerkings korrek doen nadat ek die letters met syferwaardes vervang het ____ ____ ____


Leeruitkomste 1: Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.7: Dit is duidelik wanneer die leerder skat en bereken deur geskikte bewerkings vir probleme wat die volgende behels, te kies en te gebruik:

1.7.2: veelvoudige bewerkings met heelgetalle;

Assesseringstandaard 1.9: Dit is duidelik wanneer die leerder ‘n verskeidenheid tegnieke gebruik om berekeninge te doen, insluitend:

1.9.1: die gebruik van die kommutatiewe, assosiatiewe en distributiewe eienskappe met positiewe rasionale getalle en nul;

Assesseringstandaard 1.10: Dit is duidelik wanneer die leerder ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid daarvan te beoordeel;

Leeruitkomste 2: Die leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel en probleme op te los deur algebraïese taal en vaardighede te gebruik.

Assesseringstandaard 2.5: Dit is duidelik wanneer die leerder getalsinne oplos of voltooi deur inspeksie of deur ‘n proses van probeer en verbeter, en die oplossings deur vervanging kontroleer (bv. 2 x - 8 = 4).

Questions & Answers

Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
what school?
biomolecules are e building blocks of every organics and inorganic materials.
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
sciencedirect big data base
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Wiskunde graad 7. OpenStax CNX. Oct 21, 2009 Download for free at http://cnx.org/content/col11076/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 7' conversation and receive update notifications?