<< Chapter < Page Chapter >> Page >

Wiskunde

Graad 5

Vermenigvuldiging en deling

Module 31

Deling

Aktiwiteit 1:

Om hoofrekene te kan doen

[lu 1.10]

  1. Jy weet reeds hoe belangrik dit is om hoofreken te kan doen. Jy weet ook reeds hoe belangrik dit is om jou tafels te ken! In hierdie eenheid sal dit jou baie help om deling korrek te kan doen. Kom ons spring aan die werk. Hou jy ook van droë wors? Werk saam met ’n maat. Kyk goed na die “worsmasjiene”. Die een wat die antwoorde die gouste kan sê, maak die vinnigste wors!

Wie het gewen?

2. Werk nou op jou eie en kleur in volgens die kode: 4 = donkergrys ; 5 = pienk ; 6 = lig-grys ; 7 = swart ; 9 = rooi

3. Voltooi die tabelle:

34
3.1 Gedeel deur 3 4 5 6 7 8 9
Res 1 ............ ............ ............ ............ ............ ............
61
3.2 Gedeel deur 2 5 6 7 8 9 10
Res 1 ............ ............ ............ ............ ............ ............

4. Kom ons kyk nou eers hoe jy in die volgende hoofrekentoets vaar. Voltooi dit so vinnig en akkuraat as wat jy kan.

4.1 35 – 5 – 5 – 5 = ............ 4.11 108 – 12 – 12 – 12 = ............
4.2 64 – 8 – 8 = ............ 4.12 72 – 9 – 9 = ............
4.3 42 ÷ 7 = ............ 4.13 Halveer: 612: ............
4.4 54 ÷ 6 = ............ 4.14 Halveer: 487: ............
4.5 ............ ÷ 7 = 8 4.15 Halveer: 1 036: ............
4.6 ............ ÷ 12 = 6 4.16 ............ ÷ 9 = 4
4.7 28 ÷ 4 = ............ 4.17 ............ ÷ 8 = 6
4.8 280 ÷ 4 = ............ 4.18 60 ÷ ............ = 5
4.9 280 ÷ 40 = ............ 4.19 36 ÷ ............ = 4
4.10 2 800 ÷ 40 = ............ 4.20 3 600 ÷ 90 = ............

Het jy geweet??

Deling is die omgekeerde van vermenigvuldiging. Ons noem deling die inverse van vermenigvuldiging.

Dus: 5 × 3 = 1515 ÷ 3 = 5 en15 ÷ 5 = 3

Ek vermenigvuldig dus as ek ’n deelsom wil toets en andersom.

Aktiwiteit 2:

Om die resiprookverhouding tussen vermenigvuldiging en deling te herken, te beskryf en te gebruik [lu 1.12.1]

1. Gebruik nou jou kennis van “inverse” en voltooi die volgende:

1.1 As 26 × 17 = 442, dan is 442 ÷ 17 = ................ en 442 ÷ ................ = 17

  • As 24 × 30 = 720, dan is 720 ÷ ................ = 24 en 720 ÷ 24 = ................

Het jy ook geweet?

Wanneer ons deel, doen ons die volgende:

HERHAALDE AFTREKKING

12 ÷ 3 = 12 – 3 – 3 – 3 – 3 = 4

GROEPERING

12 ÷ 3: Ons moet 12 in 3 gelyke dele indeel

VERDELING

12 ÷ 3: Ons moet 12 gelykop tussen 3 verdeel

123

Aktiwiteit 3:

Om getalle te herken en voor te stel om hulle te beskryf en te vergelyk [lu 1.3]

1. Kom ons hersien. Kan jy nog onthou wat gebeur wanneer ons enige getal deur 1 deel? Werk saam met ’n maat en vind die antwoorde van die volgende:

1.1 5 ÷ 1 = .................................. 1.2 86 ÷ 1 = ............................

1.3 359 ÷ 1 = .............................. 1.4 4 625 ÷ 1 = .......................

1.5 32 174 ÷ 1 = .........................

2. Kan julle ’n reël vir deling deur 1 neerskryf?

KOPKRAPPER!

As 5 ÷ 1 = 5 en 86 ÷ 1 = 86, dan is:

1 ÷ 5 = .........................

1 ÷ 86 = .........................

1 ÷ 359 = .........................

1 ÷ 4 625 = .........................

As 1 die deeltal is, is die antwoord dus altyd ’n ..................................................

Questions & Answers

How we are making nano material?
LITNING Reply
what is a peer
LITNING Reply
What is meant by 'nano scale'?
LITNING Reply
What is STMs full form?
LITNING
scanning tunneling microscope
Sahil
what is Nano technology ?
Bob Reply
write examples of Nano molecule?
Bob
The nanotechnology is as new science, to scale nanometric
brayan
nanotechnology is the study, desing, synthesis, manipulation and application of materials and functional systems through control of matter at nanoscale
Damian
Is there any normative that regulates the use of silver nanoparticles?
Damian Reply
what king of growth are you checking .?
Renato
What fields keep nano created devices from performing or assimulating ? Magnetic fields ? Are do they assimilate ?
Stoney Reply
why we need to study biomolecules, molecular biology in nanotechnology?
Adin Reply
?
Kyle
yes I'm doing my masters in nanotechnology, we are being studying all these domains as well..
Adin
why?
Adin
what school?
Kyle
biomolecules are e building blocks of every organics and inorganic materials.
Joe
anyone know any internet site where one can find nanotechnology papers?
Damian Reply
research.net
kanaga
sciencedirect big data base
Ernesto
Introduction about quantum dots in nanotechnology
Praveena Reply
what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
characteristics of micro business
Abigail
for teaching engĺish at school how nano technology help us
Anassong
How can I make nanorobot?
Lily
Do somebody tell me a best nano engineering book for beginners?
s. Reply
there is no specific books for beginners but there is book called principle of nanotechnology
NANO
how can I make nanorobot?
Lily
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
carbon nanotubes has various application in fuel cells membrane, current research on cancer drug,and in electronics MEMS and NEMS etc
NANO
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 5. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10993/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 5' conversation and receive update notifications?

Ask